El aumento de datos (en inglés, data augmentation) es una técnica utilizada en el aprendizaje automático y la inteligencia artificial para aumentar la cantidad de datos disponibles para entrenar un modelo. Esta técnica implica generar nuevos datos a partir de los datos existentes mediante la aplicación de transformaciones que mantienen las etiquetas originales.
El aumento de datos se utiliza comúnmente en aplicaciones de visión por computadora y procesamiento de imágenes, donde se aplican transformaciones como la rotación, el recorte, la inversión de color y el cambio de tamaño para crear variaciones de las imágenes originales. De esta manera, el modelo puede aprender a reconocer las características relevantes de la imagen independientemente de su orientación, tamaño y otros factores.
El aumento de datos es una técnica eficaz para evitar el sobreajuste en los modelos de aprendizaje automático, donde el modelo se ajusta demasiado a los datos de entrenamiento y no generaliza bien a los nuevos datos. Al aumentar la cantidad y variedad de los datos de entrenamiento, se puede mejorar la capacidad del modelo para generalizar a nuevos datos y mejorar su precisión y rendimiento.
En un mercado sobresaturado de información como el actual, cada vez es más difícil retener a los usuarios. Para las empresas, la competencia es cad [...]
Leer más »Normalmente las siglas NPLs (Non Performing Loans) se utilizan en el ámbito financiero y es una realidad tanto en los bancos españoles como en los b [...]
Leer más »La inteligencia artificial (IA) y el aprendizaje automático (ML) son dos de las tecnologías más populares utilizadas para construir sistemas inteli [...]
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »