El aumento de datos (en inglés, data augmentation) es una técnica utilizada en el aprendizaje automático y la inteligencia artificial para aumentar la cantidad de datos disponibles para entrenar un modelo. Esta técnica implica generar nuevos datos a partir de los datos existentes mediante la aplicación de transformaciones que mantienen las etiquetas originales.
El aumento de datos se utiliza comúnmente en aplicaciones de visión por computadora y procesamiento de imágenes, donde se aplican transformaciones como la rotación, el recorte, la inversión de color y el cambio de tamaño para crear variaciones de las imágenes originales. De esta manera, el modelo puede aprender a reconocer las características relevantes de la imagen independientemente de su orientación, tamaño y otros factores.
El aumento de datos es una técnica eficaz para evitar el sobreajuste en los modelos de aprendizaje automático, donde el modelo se ajusta demasiado a los datos de entrenamiento y no generaliza bien a los nuevos datos. Al aumentar la cantidad y variedad de los datos de entrenamiento, se puede mejorar la capacidad del modelo para generalizar a nuevos datos y mejorar su precisión y rendimiento.
El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »