El aprendizaje supervisado es una técnica de machine learning en la que se entrena un modelo para aprender a mapear entradas a salidas correspondientes, utilizando un conjunto de datos etiquetados. Los datos etiquetados consisten en ejemplos de entradas, también llamados características o variables independientes, junto con sus correspondientes salidas, también llamadas etiquetas o variables dependientes.
En el aprendizaje supervisado, el modelo de machine learning aprende a generalizar a partir de los ejemplos etiquetados, de manera que pueda predecir las salidas correspondientes a nuevas entradas nunca vistas antes. El objetivo es que el modelo pueda aprender una función que mapee de manera efectiva las entradas a las salidas correspondientes.
El aprendizaje supervisado se utiliza en aplicaciones como la clasificación de imágenes, el reconocimiento de voz, la traducción automática y la predicción de precios de acciones, entre otras. Se han desarrollado muchos algoritmos de aprendizaje supervisado, incluyendo árboles de decisión, regresión lineal, redes neuronales y máquinas de vectores de soporte, entre otros.
Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »Una vez que se tenga claro los conceptos base para construir un software comercial con inteligencia artificial donde se define a quién dedicar esfuer [...]
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »Las empresas son cada vez más conscientes de la importancia de analizar y gestionar adecuadamente la ingente cantidad de datos que almacenan día tra [...]
Leer más »