El aprendizaje adaptativo se refiere a un tipo de aprendizaje automático que se enfoca en adaptarse y ajustarse continuamente a los datos de entrada a medida que se obtienen nuevos datos. A diferencia del aprendizaje estático, en el que un modelo de aprendizaje automático se entrena una vez y se utiliza de manera estática, el aprendizaje adaptativo permite que el modelo se adapte y ajuste a medida que se recopilan más datos.
En el aprendizaje adaptativo, el modelo se entrena continuamente con nuevos datos y utiliza la retroalimentación para actualizar sus parámetros y ajustar su comportamiento. Esto permite que el modelo se adapte a las condiciones cambiantes del entorno y mejore su precisión con el tiempo.
El aprendizaje adaptativo se utiliza en muchas aplicaciones, como la predicción del tráfico, la predicción de la demanda de energía y la detección de fraudes financieros. En estas aplicaciones, el modelo de aprendizaje automático debe adaptarse a los cambios en las condiciones del entorno y ajustarse continuamente para mantener su precisión.
La Automatización Inteligente de Procesos en las empresas ha cambiado en el mundo de forma muy rápida en los últimos años. El COVID-19, las interr [...]
Leer más »Tras las revoluciones lideradas por el carbón, la electricidad y luego la electrónica, la sociedad está presenciando ahora una cuarta revolución i [...]
Leer más »Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »La web semántica o “internet del conocimiento” es una prolongación de la actual web. A diferencia de esta, la web semántica se basa en proporci [...]
Leer más »