El aprendizaje adaptativo se refiere a un tipo de aprendizaje automático que se enfoca en adaptarse y ajustarse continuamente a los datos de entrada a medida que se obtienen nuevos datos. A diferencia del aprendizaje estático, en el que un modelo de aprendizaje automático se entrena una vez y se utiliza de manera estática, el aprendizaje adaptativo permite que el modelo se adapte y ajuste a medida que se recopilan más datos.
En el aprendizaje adaptativo, el modelo se entrena continuamente con nuevos datos y utiliza la retroalimentación para actualizar sus parámetros y ajustar su comportamiento. Esto permite que el modelo se adapte a las condiciones cambiantes del entorno y mejore su precisión con el tiempo.
El aprendizaje adaptativo se utiliza en muchas aplicaciones, como la predicción del tráfico, la predicción de la demanda de energía y la detección de fraudes financieros. En estas aplicaciones, el modelo de aprendizaje automático debe adaptarse a los cambios en las condiciones del entorno y ajustarse continuamente para mantener su precisión.
Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »El mercado del Big Data está en plena expansión. Aunque la necesidad de transformar datos en información para la toma de decisiones no es nueva, la [...]
Leer más »