El aprendizaje activo es una técnica de aprendizaje automático en la que un modelo de aprendizaje automático solicita a un usuario que etiquete manualmente una pequeña selección de datos de entrenamiento para mejorar su rendimiento. En lugar de esperar a que un gran conjunto de datos etiquetados esté disponible para el entrenamiento, el modelo de aprendizaje activo utiliza una estrategia de selección de muestras para elegir qué datos solicitar para su etiquetado.
La selección de muestras se basa en el grado de incertidumbre del modelo sobre una muestra, lo que significa que el modelo elige muestras que cree que son más difíciles de clasificar. Después de que el usuario etiqueta estas muestras, el modelo se entrena con el conjunto de datos actualizado y repite el proceso.
El aprendizaje activo es particularmente útil en situaciones en las que el etiquetado manual de datos puede ser costoso o difícil de obtener. Por ejemplo, en la clasificación de imágenes médicas, puede ser difícil obtener grandes cantidades de datos etiquetados, pero el aprendizaje activo puede ayudar a mejorar la precisión del modelo con una selección cuidadosa de muestras para su etiquetado.
El mercado del Big Data está en plena expansión. Aunque la necesidad de transformar datos en información para la toma de decisiones no es nueva, la [...]
Leer más »En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »La Cámara Oficial de Comercio de Sevilla, en colaboración con el Instituto Español de Analistas Financieros (IEAF), ofreció el pasado 16 de marzo [...]
Leer más »La captación de nuevos clientes potenciales es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido nece [...]
Leer más »