El aprendizaje activo es una técnica de aprendizaje automático en la que un modelo de aprendizaje automático solicita a un usuario que etiquete manualmente una pequeña selección de datos de entrenamiento para mejorar su rendimiento. En lugar de esperar a que un gran conjunto de datos etiquetados esté disponible para el entrenamiento, el modelo de aprendizaje activo utiliza una estrategia de selección de muestras para elegir qué datos solicitar para su etiquetado.
La selección de muestras se basa en el grado de incertidumbre del modelo sobre una muestra, lo que significa que el modelo elige muestras que cree que son más difíciles de clasificar. Después de que el usuario etiqueta estas muestras, el modelo se entrena con el conjunto de datos actualizado y repite el proceso.
El aprendizaje activo es particularmente útil en situaciones en las que el etiquetado manual de datos puede ser costoso o difícil de obtener. Por ejemplo, en la clasificación de imágenes médicas, puede ser difícil obtener grandes cantidades de datos etiquetados, pero el aprendizaje activo puede ayudar a mejorar la precisión del modelo con una selección cuidadosa de muestras para su etiquetado.
El término Business Intelligence (o BI) define el uso de tecnologías de la información para identificar, descubrir y analizar datos comerciales, co [...]
Leer más »El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]
Leer más »Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »