El aprendizaje activo es una técnica de aprendizaje automático en la que un modelo de aprendizaje automático solicita a un usuario que etiquete manualmente una pequeña selección de datos de entrenamiento para mejorar su rendimiento. En lugar de esperar a que un gran conjunto de datos etiquetados esté disponible para el entrenamiento, el modelo de aprendizaje activo utiliza una estrategia de selección de muestras para elegir qué datos solicitar para su etiquetado.
La selección de muestras se basa en el grado de incertidumbre del modelo sobre una muestra, lo que significa que el modelo elige muestras que cree que son más difíciles de clasificar. Después de que el usuario etiqueta estas muestras, el modelo se entrena con el conjunto de datos actualizado y repite el proceso.
El aprendizaje activo es particularmente útil en situaciones en las que el etiquetado manual de datos puede ser costoso o difícil de obtener. Por ejemplo, en la clasificación de imágenes médicas, puede ser difícil obtener grandes cantidades de datos etiquetados, pero el aprendizaje activo puede ayudar a mejorar la precisión del modelo con una selección cuidadosa de muestras para su etiquetado.
En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »