El aprendizaje activo es una técnica de aprendizaje automático en la que un modelo de aprendizaje automático solicita a un usuario que etiquete manualmente una pequeña selección de datos de entrenamiento para mejorar su rendimiento. En lugar de esperar a que un gran conjunto de datos etiquetados esté disponible para el entrenamiento, el modelo de aprendizaje activo utiliza una estrategia de selección de muestras para elegir qué datos solicitar para su etiquetado.
La selección de muestras se basa en el grado de incertidumbre del modelo sobre una muestra, lo que significa que el modelo elige muestras que cree que son más difíciles de clasificar. Después de que el usuario etiqueta estas muestras, el modelo se entrena con el conjunto de datos actualizado y repite el proceso.
El aprendizaje activo es particularmente útil en situaciones en las que el etiquetado manual de datos puede ser costoso o difícil de obtener. Por ejemplo, en la clasificación de imágenes médicas, puede ser difícil obtener grandes cantidades de datos etiquetados, pero el aprendizaje activo puede ayudar a mejorar la precisión del modelo con una selección cuidadosa de muestras para su etiquetado.
La moda que viene de USA y obligará a incorporar la IA en el proceso Seguramente hace poco tiempo que hemos empezado a escuchar un nuevo concepto en [...]
Leer más »El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »La inteligencia empresarial, también conocida como "business intelligence" o BI, es un conjunto de técnicas, herramientas y metodologías que se uti [...]
Leer más »Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »