Los valores categóricos son aquellos que representan una categoría o grupo de datos, en contraste con los valores numéricos, que representan cantidades. En el aprendizaje automático, los valores categóricos son importantes porque muchos algoritmos requieren que los datos sean representados numéricamente.
Por ejemplo, los valores categóricos pueden representar la marca de un automóvil, el color de un producto, la categoría de una imagen o el tipo de una pregunta. Estos valores pueden ser representados como cadenas de caracteres o como números enteros que representan una categoría particular.
Cuando se procesan valores categóricos en un modelo de aprendizaje automático, es necesario codificarlos en una forma numérica que pueda ser interpretada por el algoritmo. Una técnica común para la codificación de valores categóricos es la codificación one-hot, que convierte cada valor categórico en un vector binario en el que solo uno de los elementos es "1" y los demás son "0".
Es importante tener en cuenta que la elección de la codificación adecuada de los valores categóricos puede afectar significativamente el rendimiento del modelo de aprendizaje automático.
En la era digital actual, las reseñas y comentarios de los clientes en línea se han convertido en un factor clave que influye en las decisiones de c [...]
Leer más »¿Qué es la Transformación Digital? La revolución industrial cambió profundamente la sociedad del siglo XIX, pero la transformación digital de la [...]
Leer más »Si alguna vez te has preguntado cómo Spotify te recomienda canciones que te gustan o cómo Siri y Alexa pueden entender lo que les dices… la respue [...]
Leer más »El escenario actual que estamos viviendo en España con la crisis sanitaria del COVID-19 ha provocado que muchas empresas hayan tenido que realizar ER [...]
Leer más »