La selección de características es un proceso de selección de variables relevantes e informativas para un modelo de aprendizaje automático, con el objetivo de mejorar la precisión y la capacidad de generalización del modelo. En lugar de utilizar todas las variables disponibles, se seleccionan las características más relevantes para reducir el costo computacional y mejorar la interpretación del modelo. Las técnicas de selección de características incluyen métodos estadísticos, de correlación y de importancia de características, entre otros. Es una técnica comúnmente utilizada en el preprocesamiento de datos para el aprendizaje automático.
Muchas veces nos preguntamos qué ejemplos de IA nos podemos encontrar en nuestro entorno y es que, la inteligencia artificial es un concepto que engl [...]
Leer más »Si las observamos por separado, el Internet de las Cosas (IoT) y la Inteligencia Artificial (IA) son tecnologías poderosas y si las combinamos, obten [...]
Leer más »El sector financiero no deja de implementar nuevas tecnologías para modernizar y digitalizar sus funciones. Uno de los motivos es el procesamiento de [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »