La regresión logística es un modelo estadístico utilizado para analizar y predecir la relación entre una variable dependiente binaria (solo dos posibles valores) y una o más variables independientes, que pueden ser categóricas o continuas. Es un tipo de análisis de regresión utilizado en machine learning y minería de datos.
La regresión logística se basa en la función logística o sigmoidal, que es una curva en forma de "S" que permite modelar la probabilidad de que la variable dependiente tenga un valor determinado en función de las variables independientes. La función logística convierte cualquier valor de entrada en un valor entre 0 y 1, lo que se interpreta como la probabilidad de que el evento ocurra.
El objetivo de la regresión logística es encontrar los coeficientes que mejor ajusten los datos y permitan predecir con mayor precisión la probabilidad de que la variable dependiente tome uno de los dos valores posibles. Los coeficientes se ajustan mediante un proceso iterativo de optimización que minimiza el error en la predicción de los valores de la variable dependiente.
La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »