Los outliers, o valores atípicos, son valores que se alejan significativamente de la mayoría de los demás valores en un conjunto de datos. En el contexto de la inteligencia artificial y el machine learning, los outliers pueden ser un problema importante porque pueden tener un efecto negativo en la precisión y la eficacia de los modelos de aprendizaje automático. Los outliers pueden ser el resultado de errores de medición, errores de entrada de datos o eventos raros y poco frecuentes en el entorno del conjunto de datos. Si no se manejan adecuadamente, los outliers pueden sesgar los modelos de aprendizaje automático y generar predicciones inexactas o insuficientes. Por lo tanto, es importante identificar y tratar los outliers en los conjuntos de datos antes de utilizarlos para entrenar modelos de aprendizaje automático. Los métodos comunes para manejar los outliers incluyen la eliminación de los valores atípicos, la transformación de los datos para reducir su impacto y el uso de modelos robustos que sean menos sensibles a los outliers.
Si las observamos por separado, el Internet de las Cosas (IoT) y la Inteligencia Artificial (IA) son tecnologías poderosas y si las combinamos, obten [...]
Leer más »Una vez que se tenga claro los conceptos base para construir un software comercial con inteligencia artificial donde se define a quién dedicar esfuer [...]
Leer más »Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »Data Mining es un proceso de exploración y análisis de grandes cantidades de datos, con el objetivo de descubrir patrones, relaciones y tendencias q [...]
Leer más »