Los outliers, o valores atípicos, son valores que se alejan significativamente de la mayoría de los demás valores en un conjunto de datos. En el contexto de la inteligencia artificial y el machine learning, los outliers pueden ser un problema importante porque pueden tener un efecto negativo en la precisión y la eficacia de los modelos de aprendizaje automático. Los outliers pueden ser el resultado de errores de medición, errores de entrada de datos o eventos raros y poco frecuentes en el entorno del conjunto de datos. Si no se manejan adecuadamente, los outliers pueden sesgar los modelos de aprendizaje automático y generar predicciones inexactas o insuficientes. Por lo tanto, es importante identificar y tratar los outliers en los conjuntos de datos antes de utilizarlos para entrenar modelos de aprendizaje automático. Los métodos comunes para manejar los outliers incluyen la eliminación de los valores atípicos, la transformación de los datos para reducir su impacto y el uso de modelos robustos que sean menos sensibles a los outliers.
A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »El 'credit scoring' es un sistema que sirve para calificar créditos e intentar automatizar, con ello, la toma de decisiones a la hora de p [...]
Leer más »Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »