El aprendizaje por refuerzo profundo (en inglés, deep reinforcement learning) es una técnica de machine learning que combina el aprendizaje por refuerzo con redes neuronales profundas (deep learning).
En el aprendizaje por refuerzo profundo, un agente aprende a tomar decisiones a través de la retroalimentación recibida del entorno, pero en lugar de utilizar técnicas de aprendizaje clásicas, se utiliza una red neuronal profunda para aprender la política de decisión óptima. La red neuronal profunda toma como entrada los datos del entorno y produce como salida la acción que el agente debe tomar en ese momento.
El aprendizaje por refuerzo profundo es una técnica muy poderosa para el aprendizaje de tareas complejas y no estructuradas, como el control de robots o la toma de decisiones en juegos complejos. Además, se ha demostrado que el aprendizaje por refuerzo profundo puede ser utilizado para aprender a jugar juegos de estrategia complejos, como Go o Ajedrez, superando a los mejores jugadores humanos.
Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »