El aprendizaje basado en casos (CBL, por sus siglas en inglés) es un método de aprendizaje de máquina en el que un sistema aprende a partir de la resolución de casos previos similares a la tarea actual.
En este método, el sistema utiliza una base de casos que contiene una serie de casos previamente resueltos que son similares a la tarea actual. El sistema utiliza esta información para buscar casos similares y aplicar la solución previa a la tarea actual.
El proceso de CBL se compone de tres fases: la recuperación, la adaptación y la evaluación. En la fase de recuperación, el sistema busca casos similares en la base de datos. En la fase de adaptación, el sistema modifica la solución del caso anterior para adaptarse a la tarea actual. En la fase de evaluación, el sistema evalúa la solución propuesta y la compara con la solución óptima.
El aprendizaje basado en casos es utilizado en diversas aplicaciones, como en la resolución de problemas de diagnóstico médico, el reconocimiento de patrones, la toma de decisiones, la planificación de tareas, entre otros.
La inteligencia artificial (IA) puede cambiar la forma de gestionar los canales de ventas y clientes de las empresas fabricantes y distribuidoras de p [...]
Leer más »En la era digital actual, las reseñas y comentarios de los clientes en línea se han convertido en un factor clave que influye en las decisiones de c [...]
Leer más »La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »Cada vez más empresas están aprovechando la información relevante que extraen de los datos que poseen y generan para mejorar sus procesos y descubr [...]
Leer más »