El aprendizaje adaptativo se refiere a un tipo de aprendizaje automático que se enfoca en adaptarse y ajustarse continuamente a los datos de entrada a medida que se obtienen nuevos datos. A diferencia del aprendizaje estático, en el que un modelo de aprendizaje automático se entrena una vez y se utiliza de manera estática, el aprendizaje adaptativo permite que el modelo se adapte y ajuste a medida que se recopilan más datos.
En el aprendizaje adaptativo, el modelo se entrena continuamente con nuevos datos y utiliza la retroalimentación para actualizar sus parámetros y ajustar su comportamiento. Esto permite que el modelo se adapte a las condiciones cambiantes del entorno y mejore su precisión con el tiempo.
El aprendizaje adaptativo se utiliza en muchas aplicaciones, como la predicción del tráfico, la predicción de la demanda de energía y la detección de fraudes financieros. En estas aplicaciones, el modelo de aprendizaje automático debe adaptarse a los cambios en las condiciones del entorno y ajustarse continuamente para mantener su precisión.
En los anteriores artículos ("Conceptos base para construir un software comercial con inteligencia artificial" y "¿Cómo se materializan las oportun [...]
Leer más »OpenAI es una empresa tecnológica creada por los principales líderes en inteligencia artificial que, en sus comienzos, se definía como una organiza [...]
Leer más »Las tecnologías de Inteligencia Artificial (IA) se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la i [...]
Leer más »¿Cómo nos está ayudando la inteligencia artificial? La inteligencia artificial (IA) ha pasado de ser un tema de película de ciencia ficción a un [...]
Leer más »