Los valores vacíos, también conocidos como valores nulos o valores faltantes, son aquellos que no tienen un valor definido en un conjunto de datos. Los valores vacíos pueden surgir por varias razones, como la falta de información, la eliminación de datos o la corrupción de datos.
En el aprendizaje automático, los valores vacíos pueden ser un problema importante porque muchos algoritmos de aprendizaje automático no pueden manejar valores vacíos. La presencia de valores vacíos puede causar errores en el análisis y la predicción de datos. Además, la eliminación de registros que contienen valores vacíos puede reducir significativamente el tamaño del conjunto de datos y afectar el rendimiento del modelo.
Existen diferentes técnicas para manejar valores vacíos en el aprendizaje automático, como la eliminación de registros con valores vacíos, la imputación de valores, la asignación de valores predeterminados y el modelado de los valores vacíos como una característica separada. La elección de la técnica adecuada dependerá del problema específico y de la cantidad y distribución de los valores vacíos en el conjunto de datos.
Las siglas ERP significan Enterprise Resource Planning y se trata de un sistema de planificación informático y gestión empresarial capaz de integra [...]
Leer más »Energía barata, infinita, segura y limpia La Inteligencia Artificial desde la investigación de la Fusión Termonuclear a la generación de ventas o [...]
Leer más »Las tecnologías de IA se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la interacción con los client [...]
Leer más »Ya tienes todo lo necesario para ponerte manos a la obra y empezar a trabajar con los datos de la empresa. Tras sortear los primeros obstáculos de ma [...]
Leer más »