La selección de características es un proceso de selección de variables relevantes e informativas para un modelo de aprendizaje automático, con el objetivo de mejorar la precisión y la capacidad de generalización del modelo. En lugar de utilizar todas las variables disponibles, se seleccionan las características más relevantes para reducir el costo computacional y mejorar la interpretación del modelo. Las técnicas de selección de características incluyen métodos estadísticos, de correlación y de importancia de características, entre otros. Es una técnica comúnmente utilizada en el preprocesamiento de datos para el aprendizaje automático.
La Inteligencia Artificial (IA) deriva en una serie de modelos o ramas que se pueden emplear en diferentes ámbitos de la vida de las personas así co [...]
Leer más »Las tecnologías de Inteligencia Artificial (IA) se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la i [...]
Leer más »La captación de nuevos clientes es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido necesario recurr [...]
Leer más »En los anteriores artículos ("Conceptos base para construir un software comercial con inteligencia artificial" y "¿Cómo se materializan las oportun [...]
Leer más »