La selección de características es un proceso de selección de variables relevantes e informativas para un modelo de aprendizaje automático, con el objetivo de mejorar la precisión y la capacidad de generalización del modelo. En lugar de utilizar todas las variables disponibles, se seleccionan las características más relevantes para reducir el costo computacional y mejorar la interpretación del modelo. Las técnicas de selección de características incluyen métodos estadísticos, de correlación y de importancia de características, entre otros. Es una técnica comúnmente utilizada en el preprocesamiento de datos para el aprendizaje automático.
El 'credit scoring' es un sistema que sirve para calificar créditos e intentar automatizar, con ello, la toma de decisiones a la hora de p [...]
Leer más »Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »En los últimos años todos los temas referentes a la Inteligencia Artificial (IA) están levantando un enorme interés. Quizás sea porque el corazó [...]
Leer más »La Automatización Inteligente de Procesos en las empresas ha cambiado en el mundo de forma muy rápida en los últimos años. El COVID-19, las interr [...]
Leer más »