La selección de características es un proceso de selección de variables relevantes e informativas para un modelo de aprendizaje automático, con el objetivo de mejorar la precisión y la capacidad de generalización del modelo. En lugar de utilizar todas las variables disponibles, se seleccionan las características más relevantes para reducir el costo computacional y mejorar la interpretación del modelo. Las técnicas de selección de características incluyen métodos estadísticos, de correlación y de importancia de características, entre otros. Es una técnica comúnmente utilizada en el preprocesamiento de datos para el aprendizaje automático.
En la era digital actual, las reseñas y comentarios de los clientes en línea se han convertido en un factor clave que influye en las decisiones de c [...]
Leer más »El deep learning se traduce como aprendizaje profundo y es un tipo de inteligencia artificial (IA) que se encuentra englobado dentro del machine learn [...]
Leer más »Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »El chargeback hace referencia a las devoluciones que ocurren cuando, a petición del titular de una tarjeta, el banco solicita en su nombre un reembol [...]
Leer más »