Selección de características

Concepto y definición

Selección de características

¿Qué es Selección de características?

La selección de características es un proceso de selección de variables relevantes e informativas para un modelo de aprendizaje automático, con el objetivo de mejorar la precisión y la capacidad de generalización del modelo. En lugar de utilizar todas las variables disponibles, se seleccionan las características más relevantes para reducir el costo computacional y mejorar la interpretación del modelo. Las técnicas de selección de características incluyen métodos estadísticos, de correlación y de importancia de características, entre otros. Es una técnica comúnmente utilizada en el preprocesamiento de datos para el aprendizaje automático.

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
¿Qué es el minado de Datos o Data Mining?

Data Mining es un proceso de exploración y análisis de grandes cantidades de datos, con el objetivo de descubrir patrones, relaciones y tendencias q [...]

Leer más »
Cómo la Inteligencia Artificial aplicada al CRM mejora la experiencia del cliente

Las empresas son cada vez más conscientes de la importancia de analizar y gestionar adecuadamente la ingente cantidad de datos que almacenan día tra [...]

Leer más »
El papel del aprendizaje automático en la detección de fraudes

El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]

Leer más »
Experiencia con datos reales

Ya tienes todo lo necesario para ponerte manos a la obra y empezar a trabajar con los datos de la empresa. Tras sortear los primeros obstáculos de ma [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies