El feedback, o retroalimentación en español, se refiere a la información que se proporciona a un sistema o modelo de aprendizaje automático después de que ha hecho una predicción o tomado una decisión. El feedback se utiliza para mejorar el rendimiento del modelo mediante la corrección de errores y la actualización de los parámetros del modelo en consecuencia.
El feedback puede ser positivo o negativo, y puede ser proporcionado de forma supervisada o no supervisada. En el aprendizaje supervisado, el feedback se proporciona en forma de etiquetas de entrenamiento que se utilizan para ajustar el modelo. En el aprendizaje no supervisado, el feedback se proporciona a través de la comparación de las predicciones del modelo con las observaciones del mundo real.
El feedback es importante en el aprendizaje automático porque permite a los modelos adaptarse y mejorar con el tiempo. Sin feedback, los modelos pueden estancarse en soluciones subóptimas y no ser capaces de aprender de forma efectiva a partir de nuevos datos. Además, el feedback también es importante para la evaluación del rendimiento del modelo, ya que permite la comparación de las predicciones del modelo con las observaciones reales y la identificación de posibles errores o incoherencias.
La captación de nuevos clientes potenciales es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido nece [...]
Leer más »Cada vez más empresas están aprovechando la información relevante que extraen de los datos que poseen y generan para mejorar sus procesos y descubr [...]
Leer más »¿Qué es la Transformación Digital? La revolución industrial cambió profundamente la sociedad del siglo XIX, pero la transformación digital de la [...]
Leer más »En los anteriores artículos ("Conceptos base para construir un software comercial con inteligencia artificial" y "¿Cómo se materializan las oportun [...]
Leer más »