El feedback, o retroalimentación en español, se refiere a la información que se proporciona a un sistema o modelo de aprendizaje automático después de que ha hecho una predicción o tomado una decisión. El feedback se utiliza para mejorar el rendimiento del modelo mediante la corrección de errores y la actualización de los parámetros del modelo en consecuencia.
El feedback puede ser positivo o negativo, y puede ser proporcionado de forma supervisada o no supervisada. En el aprendizaje supervisado, el feedback se proporciona en forma de etiquetas de entrenamiento que se utilizan para ajustar el modelo. En el aprendizaje no supervisado, el feedback se proporciona a través de la comparación de las predicciones del modelo con las observaciones del mundo real.
El feedback es importante en el aprendizaje automático porque permite a los modelos adaptarse y mejorar con el tiempo. Sin feedback, los modelos pueden estancarse en soluciones subóptimas y no ser capaces de aprender de forma efectiva a partir de nuevos datos. Además, el feedback también es importante para la evaluación del rendimiento del modelo, ya que permite la comparación de las predicciones del modelo con las observaciones reales y la identificación de posibles errores o incoherencias.
La captación de nuevos clientes es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido necesario recurr [...]
Leer más »La Inteligencia Artificial (IA) deriva en una serie de modelos o ramas que se pueden emplear en diferentes ámbitos de la vida de las personas así co [...]
Leer más »El uso de Inteligencia Artificial en los negocios es cada vez más común y necesario para la optimización y evolución de los procesos. En uno de nu [...]
Leer más »Hace unos días pudimos asistir a un evento pionero en el mundo del Retail, la feria Retail Future 2022. En su quinta edición, y bajo el lema “Reta [...]
Leer más »