La regresión logística es un modelo estadístico utilizado para analizar y predecir la relación entre una variable dependiente binaria (solo dos posibles valores) y una o más variables independientes, que pueden ser categóricas o continuas. Es un tipo de análisis de regresión utilizado en machine learning y minería de datos.
La regresión logística se basa en la función logística o sigmoidal, que es una curva en forma de "S" que permite modelar la probabilidad de que la variable dependiente tenga un valor determinado en función de las variables independientes. La función logística convierte cualquier valor de entrada en un valor entre 0 y 1, lo que se interpreta como la probabilidad de que el evento ocurra.
El objetivo de la regresión logística es encontrar los coeficientes que mejor ajusten los datos y permitan predecir con mayor precisión la probabilidad de que la variable dependiente tome uno de los dos valores posibles. Los coeficientes se ajustan mediante un proceso iterativo de optimización que minimiza el error en la predicción de los valores de la variable dependiente.
La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »Es conveniente que mediante un breve cuestionario seamos capaces de verificar la viabilidad de una oportunidad de negocio. A continuación, desarrolla [...]
Leer más »Los servicios o las soluciones en la nube (cloud computing), ya sea en España o en cualquier parte del mundo, son infraestructuras, plataformas o sis [...]
Leer más »La inteligencia artificial está cambiando el mundo a una velocidad vertiginosa y seguro que te estarás preguntando cuándo superará la inteligencia [...]
Leer más »