La regresión logística es un modelo estadístico utilizado para analizar y predecir la relación entre una variable dependiente binaria (solo dos posibles valores) y una o más variables independientes, que pueden ser categóricas o continuas. Es un tipo de análisis de regresión utilizado en machine learning y minería de datos.
La regresión logística se basa en la función logística o sigmoidal, que es una curva en forma de "S" que permite modelar la probabilidad de que la variable dependiente tenga un valor determinado en función de las variables independientes. La función logística convierte cualquier valor de entrada en un valor entre 0 y 1, lo que se interpreta como la probabilidad de que el evento ocurra.
El objetivo de la regresión logística es encontrar los coeficientes que mejor ajusten los datos y permitan predecir con mayor precisión la probabilidad de que la variable dependiente tome uno de los dos valores posibles. Los coeficientes se ajustan mediante un proceso iterativo de optimización que minimiza el error en la predicción de los valores de la variable dependiente.
La web semántica o “internet del conocimiento” es una prolongación de la actual web. A diferencia de esta, la web semántica se basa en proporci [...]
Leer más »Lo primero que hay que conocer son los límites de la IA y tras dominar los conceptos base se podrá construir un gran software comercial con intelige [...]
Leer más »El uso de Inteligencia Artificial en los negocios es cada vez más común y necesario para la optimización y evolución de los procesos. En uno de nu [...]
Leer más »A la hora de buscar financiación para empresas, una de las fórmulas más utilizadas en la actualidad es el factoring. Se trata de un recurso no siem [...]
Leer más »