Las Redes Auto-Organizativas Crecientes (Growing Self-Organizing Networks en inglés, abreviadas como GSOM) son un tipo de red neuronal artificial no supervisada que se utiliza para el aprendizaje y la visualización de datos en alta dimensión. Las GSOM se basan en una estructura de malla o rejilla, donde cada nodo representa una región de entrada en el espacio de características de los datos.
El proceso de aprendizaje de las GSOM se divide en dos fases principales: una fase de crecimiento y una fase de poda. En la fase de crecimiento, los nodos se van añadiendo a la red de manera dinámica, según sea necesario para acomodar la distribución de los datos. En la fase de poda, se eliminan los nodos innecesarios, manteniendo solo los nodos que son relevantes para la representación de los datos.
Las GSOM se utilizan a menudo para la visualización y exploración de grandes conjuntos de datos en alta dimensión. La estructura de malla de la red permite una representación bidimensional de los datos, lo que facilita la identificación de patrones y relaciones entre los datos. Además, las GSOM tienen la capacidad de adaptarse a nuevos datos, lo que las hace útiles para aplicaciones en tiempo real.
Referencia: “A growing self-organizing network for reconstructing curves and surfaces”, Piastra, Marco, en Neural Networks, 2009. IJCNN 2009. International Joint Conference on, IEEE, 2009, pp. 2533–2540
Las tecnologías de Inteligencia Artificial (IA) se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la i [...]
Leer más »Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »Las siglas ERP significan Enterprise Resource Planning y se trata de un sistema de planificación informático y gestión empresarial capaz de integra [...]
Leer más »En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »