Una Red Neuronal Recurrente (Recurrent Neural Network en inglés, abreviada como RNN) es un tipo de red neuronal artificial que se utiliza para procesar datos secuenciales o temporales. A diferencia de las redes neuronales feedforward, en las que la información fluye en una sola dirección, en las RNN la información fluye en bucle, es decir, la salida en un momento dado se utiliza como entrada en el siguiente momento.
La capacidad de procesar secuencias de datos las hace útiles para una amplia variedad de aplicaciones, como el reconocimiento de voz, la traducción automática y la generación de texto. Una de las principales características de las RNN es su capacidad para modelar dependencias a largo plazo en las secuencias de datos.
Las RNN tienen una estructura recurrente, que permite que la información fluya de una capa a otra a través de un estado oculto, que almacena información sobre los estados anteriores. El estado oculto se actualiza en cada paso de tiempo y se utiliza para influir en la salida en el siguiente paso de tiempo. Esto permite que la RNN tenga memoria a largo plazo y sea capaz de capturar patrones en secuencias de datos que se extienden a lo largo del tiempo.
La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »Si las observamos por separado, el Internet de las Cosas (IoT) y la Inteligencia Artificial (IA) son tecnologías poderosas y si las combinamos, obten [...]
Leer más »¿Qué es la Transformación Digital? La revolución industrial cambió profundamente la sociedad del siglo XIX, pero la transformación digital de la [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »