Una Red Neuronal Recurrente (Recurrent Neural Network en inglés, abreviada como RNN) es un tipo de red neuronal artificial que se utiliza para procesar datos secuenciales o temporales. A diferencia de las redes neuronales feedforward, en las que la información fluye en una sola dirección, en las RNN la información fluye en bucle, es decir, la salida en un momento dado se utiliza como entrada en el siguiente momento.
La capacidad de procesar secuencias de datos las hace útiles para una amplia variedad de aplicaciones, como el reconocimiento de voz, la traducción automática y la generación de texto. Una de las principales características de las RNN es su capacidad para modelar dependencias a largo plazo en las secuencias de datos.
Las RNN tienen una estructura recurrente, que permite que la información fluya de una capa a otra a través de un estado oculto, que almacena información sobre los estados anteriores. El estado oculto se actualiza en cada paso de tiempo y se utiliza para influir en la salida en el siguiente paso de tiempo. Esto permite que la RNN tenga memoria a largo plazo y sea capaz de capturar patrones en secuencias de datos que se extienden a lo largo del tiempo.
En este artículo vamos a centrarnos en cómo la inteligencia artificial (IA) puede aumentar la eficiencia y reducir los costes de su empresa mediante [...]
Leer más »Muchas veces nos preguntamos qué ejemplos de IA nos podemos encontrar en nuestro entorno y es que, la inteligencia artificial es un concepto que engl [...]
Leer más »En un mercado sobresaturado de información como el actual, cada vez es más difícil retener a los usuarios. Para las empresas, la competencia es cad [...]
Leer más »La inteligencia artificial (IA) y el aprendizaje automático (ML) son dos de las tecnologías más populares utilizadas para construir sistemas inteli [...]
Leer más »