Una red generativa antagónica, también conocida como GAN (por sus siglas en inglés, Generative Adversarial Network), es un tipo de arquitectura de redes neuronales artificiales utilizada en el campo del aprendizaje automático para generar datos nuevos y originales a partir de datos de entrada.
La estructura de una GAN consta de dos redes neuronales: un generador y un discriminador. El generador recibe un conjunto de datos de entrada (por ejemplo, imágenes o texto) y genera nuevas muestras que se parecen a las muestras originales. El discriminador, por otro lado, evalúa la calidad de las muestras generadas y trata de distinguir si son reales o falsas.
Durante el entrenamiento, el generador intenta engañar al discriminador generando muestras que sean cada vez más similares a las muestras originales, mientras que el discriminador intenta detectar las diferencias entre las muestras generadas y las muestras originales. Este proceso de competencia y retroalimentación entre el generador y el discriminador continúa hasta que el generador es capaz de generar muestras que son prácticamente indistinguibles de las muestras originales.
Las GANs se han utilizado en una amplia variedad de aplicaciones, como la generación de imágenes y videos, la síntesis de voz y música, el procesamiento del lenguaje natural y la creación de modelos de juego. Además, las GANs han demostrado ser útiles para mejorar la calidad de los datos de entrada y para la transferencia de estilo.
Un artículo publicado en abril de 2021 por Óscar Jiménez El Confidencial, se titulaba así “Premio de 34.000 M para los bancos por aplicar bien i [...]
Leer más »Lograr las metas empresariales y hacer un seguimiento del éxito es un aspecto importante para mejorar en cualquier negocio. En ventas, medir el progr [...]
Leer más »El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]
Leer más »La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »