El término "recogida de datos" se refiere al proceso de recopilar información y datos relevantes para un análisis posterior. En el contexto de la inteligencia artificial y el machine learning, la recogida de datos es un paso fundamental para desarrollar modelos predictivos y analíticos. Los datos se pueden recopilar de diversas fuentes, como bases de datos, sensores, redes sociales, registros financieros, entre otros.
La calidad de los datos es crucial para garantizar que los modelos predictivos sean precisos y confiables. Es importante que los datos recogidos sean precisos, completos y relevantes para el análisis que se va a realizar. Además, es fundamental que los datos estén estructurados y organizados de manera que puedan ser procesados y analizados de forma eficiente.
La recogida de datos también puede ser un proceso continuo, ya que se pueden necesitar datos adicionales para mejorar la precisión del modelo a medida que se actualiza. En resumen, la recogida de datos es una etapa crítica en el desarrollo de modelos de inteligencia artificial y machine learning, ya que la calidad de los datos recogidos puede tener un impacto significativo en la precisión y utilidad del modelo resultante.
Si no sabes cuál es la diferencia entre un sistema ERP (Enterprise Resource Planning) y un sistema CRM (Customer Relationship Management), a continua [...]
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »El sector financiero no deja de implementar nuevas tecnologías para modernizar y digitalizar sus funciones. Uno de los motivos es el procesamiento de [...]
Leer más »Existe consenso entre los directivos de las mayores compañías del mundo sobre el importante impacto que la Inteligencia Artificial (IA) va a tener e [...]
Leer más »