Un modelo autorregresivo (AR, por sus siglas en inglés) es un modelo estadístico en el que la variable de interés se regresa a sí misma en un modelo de regresión lineal. En otras palabras, un modelo AR utiliza una serie de tiempo para predecir su propio futuro.
En inteligencia artificial y machine learning, los modelos autorregresivos se utilizan comúnmente en el análisis de series temporales para predecir el valor futuro de una variable basándose en sus valores pasados. En este tipo de modelo, la variable de interés se descompone en una combinación de sus valores pasados y un término de error aleatorio.
El orden de un modelo AR se refiere al número de valores pasados utilizados para predecir el valor futuro de la variable de interés. Por ejemplo, un modelo AR de orden 1 utiliza solo un valor pasado para predecir el valor futuro, mientras que un modelo AR de orden 2 utiliza dos valores pasados.
Los modelos autorregresivos son útiles para predecir patrones y tendencias en series temporales, como el precio de las acciones, el consumo de energía o el tráfico web. La precisión de un modelo AR depende en gran medida de la elección del orden y la cantidad de datos disponibles para el entrenamiento del modelo.
Las empresas son cada día más conscientes de la importancia de incorporar paulatinamente la inteligencia artificial a sus modelos de negocio. La imp [...]
Leer más »Las siglas ERP significan Enterprise Resource Planning y se trata de un sistema de planificación informático y gestión empresarial capaz de integra [...]
Leer más »A la hora de conseguir nuevos clientes, todo son alegrías y satisfacción por poder prestarles nuestro servicio o venderles nuestro producto de la me [...]
Leer más »Hace unos días pudimos asistir a un evento pionero en el mundo del Retail, la feria Retail Future 2022. En su quinta edición, y bajo el lema “Reta [...]
Leer más »