Un modelo autorregresivo (AR, por sus siglas en inglés) es un modelo estadístico en el que la variable de interés se regresa a sí misma en un modelo de regresión lineal. En otras palabras, un modelo AR utiliza una serie de tiempo para predecir su propio futuro.
En inteligencia artificial y machine learning, los modelos autorregresivos se utilizan comúnmente en el análisis de series temporales para predecir el valor futuro de una variable basándose en sus valores pasados. En este tipo de modelo, la variable de interés se descompone en una combinación de sus valores pasados y un término de error aleatorio.
El orden de un modelo AR se refiere al número de valores pasados utilizados para predecir el valor futuro de la variable de interés. Por ejemplo, un modelo AR de orden 1 utiliza solo un valor pasado para predecir el valor futuro, mientras que un modelo AR de orden 2 utiliza dos valores pasados.
Los modelos autorregresivos son útiles para predecir patrones y tendencias en series temporales, como el precio de las acciones, el consumo de energía o el tráfico web. La precisión de un modelo AR depende en gran medida de la elección del orden y la cantidad de datos disponibles para el entrenamiento del modelo.
La moda que viene de USA y obligará a incorporar la IA en el proceso Seguramente hace poco tiempo que hemos empezado a escuchar un nuevo concepto en [...]
Leer más »En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »