Un modelo autorregresivo (AR, por sus siglas en inglés) es un modelo estadístico en el que la variable de interés se regresa a sí misma en un modelo de regresión lineal. En otras palabras, un modelo AR utiliza una serie de tiempo para predecir su propio futuro.
En inteligencia artificial y machine learning, los modelos autorregresivos se utilizan comúnmente en el análisis de series temporales para predecir el valor futuro de una variable basándose en sus valores pasados. En este tipo de modelo, la variable de interés se descompone en una combinación de sus valores pasados y un término de error aleatorio.
El orden de un modelo AR se refiere al número de valores pasados utilizados para predecir el valor futuro de la variable de interés. Por ejemplo, un modelo AR de orden 1 utiliza solo un valor pasado para predecir el valor futuro, mientras que un modelo AR de orden 2 utiliza dos valores pasados.
Los modelos autorregresivos son útiles para predecir patrones y tendencias en series temporales, como el precio de las acciones, el consumo de energía o el tráfico web. La precisión de un modelo AR depende en gran medida de la elección del orden y la cantidad de datos disponibles para el entrenamiento del modelo.
Cobrar deudas, hoy en día, se está convirtiendo en una ardua tarea para muchas empresas o autónomos. Cada vez son más los bancos, servicios [...]
Leer más »Seguramente te estés preguntando ¿Qué es un seguro de caución? ¿Y cómo ayuda a tu empresa? Y es que, en el entorno económico actual, [...]
Leer más »El software de optimización comercial basado en la inteligencia artificial debe tener feedback de las acciones comerciales llevadas a cabo, de las nu [...]
Leer más »Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »