Un modelo autorregresivo (AR, por sus siglas en inglés) es un modelo estadístico en el que la variable de interés se regresa a sí misma en un modelo de regresión lineal. En otras palabras, un modelo AR utiliza una serie de tiempo para predecir su propio futuro.
En inteligencia artificial y machine learning, los modelos autorregresivos se utilizan comúnmente en el análisis de series temporales para predecir el valor futuro de una variable basándose en sus valores pasados. En este tipo de modelo, la variable de interés se descompone en una combinación de sus valores pasados y un término de error aleatorio.
El orden de un modelo AR se refiere al número de valores pasados utilizados para predecir el valor futuro de la variable de interés. Por ejemplo, un modelo AR de orden 1 utiliza solo un valor pasado para predecir el valor futuro, mientras que un modelo AR de orden 2 utiliza dos valores pasados.
Los modelos autorregresivos son útiles para predecir patrones y tendencias en series temporales, como el precio de las acciones, el consumo de energía o el tráfico web. La precisión de un modelo AR depende en gran medida de la elección del orden y la cantidad de datos disponibles para el entrenamiento del modelo.
La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »Las siglas ERP significan Enterprise Resource Planning y se trata de un sistema de planificación informático y gestión empresarial capaz de integra [...]
Leer más »Hace unos días pudimos asistir a un evento pionero en el mundo del Retail, la feria Retail Future 2022. En su quinta edición, y bajo el lema “Reta [...]
Leer más »