Las metaheurísticas son técnicas de optimización de búsqueda basadas en algoritmos heurísticos que se utilizan para resolver problemas complejos en los que el espacio de búsqueda es muy grande o desconocido. Las metaheurísticas son algoritmos de propósito general que no están diseñados para un problema específico, sino que se pueden adaptar a una amplia variedad de problemas de optimización en diferentes campos, como la inteligencia artificial, la ingeniería, la economía, la biología y muchos otros. Las metaheurísticas son algoritmos que se basan en la exploración iterativa del espacio de soluciones, utilizando estrategias para moverse de forma inteligente por el espacio de búsqueda y para escapar de los óptimos locales. Algunas de las metaheurísticas más conocidas son el algoritmo genético, el algoritmo de colonia de hormigas, el recocido simulado, el enjambre de partículas y la optimización por búsqueda tabú. Las metaheurísticas se utilizan en aplicaciones de inteligencia artificial y aprendizaje automático para la optimización de hiperparámetros, la selección de características y la optimización de redes neuronales, entre otras tareas.
Se pueden destacar 5 desafíos del Big Data que se definen como V (volumen, velocidad, veracidad, variedad y valor). R. Narasimhan debatió sobre 3V c [...]
Leer más »Es de vital importancia comprender, identificar y satisfacer las necesidades de los clientes. De este modo, nuestro negocio podrá ofrecer productos y [...]
Leer más »Energía barata, infinita, segura y limpia La Inteligencia Artificial desde la investigación de la Fusión Termonuclear a la generación de ventas o [...]
Leer más »La web semántica o “internet del conocimiento” es una prolongación de la actual web. A diferencia de esta, la web semántica se basa en proporci [...]
Leer más »