Las metaheurísticas son técnicas de optimización de búsqueda basadas en algoritmos heurísticos que se utilizan para resolver problemas complejos en los que el espacio de búsqueda es muy grande o desconocido. Las metaheurísticas son algoritmos de propósito general que no están diseñados para un problema específico, sino que se pueden adaptar a una amplia variedad de problemas de optimización en diferentes campos, como la inteligencia artificial, la ingeniería, la economía, la biología y muchos otros. Las metaheurísticas son algoritmos que se basan en la exploración iterativa del espacio de soluciones, utilizando estrategias para moverse de forma inteligente por el espacio de búsqueda y para escapar de los óptimos locales. Algunas de las metaheurísticas más conocidas son el algoritmo genético, el algoritmo de colonia de hormigas, el recocido simulado, el enjambre de partículas y la optimización por búsqueda tabú. Las metaheurísticas se utilizan en aplicaciones de inteligencia artificial y aprendizaje automático para la optimización de hiperparámetros, la selección de características y la optimización de redes neuronales, entre otras tareas.
En este artículo vamos a centrarnos en cómo la inteligencia artificial (IA) puede aumentar la eficiencia y reducir los costes de su empresa mediante [...]
Leer más »El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]
Leer más »Tras las revoluciones lideradas por el carbón, la electricidad y luego la electrónica, la sociedad está presenciando ahora una cuarta revolución i [...]
Leer más »La captación de nuevos clientes potenciales es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido nece [...]
Leer más »