Las metaheurísticas son técnicas de optimización de búsqueda basadas en algoritmos heurísticos que se utilizan para resolver problemas complejos en los que el espacio de búsqueda es muy grande o desconocido. Las metaheurísticas son algoritmos de propósito general que no están diseñados para un problema específico, sino que se pueden adaptar a una amplia variedad de problemas de optimización en diferentes campos, como la inteligencia artificial, la ingeniería, la economía, la biología y muchos otros. Las metaheurísticas son algoritmos que se basan en la exploración iterativa del espacio de soluciones, utilizando estrategias para moverse de forma inteligente por el espacio de búsqueda y para escapar de los óptimos locales. Algunas de las metaheurísticas más conocidas son el algoritmo genético, el algoritmo de colonia de hormigas, el recocido simulado, el enjambre de partículas y la optimización por búsqueda tabú. Las metaheurísticas se utilizan en aplicaciones de inteligencia artificial y aprendizaje automático para la optimización de hiperparámetros, la selección de características y la optimización de redes neuronales, entre otras tareas.
Existe consenso entre los directivos de las principales empresas del mundo acerca del impacto crucial que la Inteligencia Artificial (IA) en el sector [...]
Leer más »El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]
Leer más »Cobrar deudas, hoy en día, se está convirtiendo en una ardua tarea para muchas empresas o autónomos. Cada vez son más los bancos, servicios [...]
Leer más »Cada vez más empresas están aprovechando la información relevante que extraen de los datos que poseen y generan para mejorar sus procesos y descubr [...]
Leer más »