Las máquinas de soporte vectorial (SVM, por sus siglas en inglés) son un tipo de algoritmo de aprendizaje supervisado utilizado para la clasificación y regresión en problemas de Machine Learning.
La idea detrás de las SVM es encontrar un hiperplano que separe de manera óptima las diferentes clases de datos. En el caso de la clasificación binaria, el hiperplano divide el espacio en dos regiones, una para cada clase. En el caso de la regresión, se busca un hiperplano que se ajuste lo mejor posible a los datos.
Para encontrar el hiperplano óptimo, las SVM buscan maximizar la distancia entre los puntos más cercanos de cada clase (llamados vectores de soporte), lo que se conoce como máximo margen. En caso de que los datos no sean linealmente separables, se utilizan técnicas de kernel para transformar el espacio de características en uno de mayor dimensionalidad donde sí puedan ser separables.
Las SVM son ampliamente utilizadas en la clasificación de datos en áreas como la biología, finanzas y marketing, así como en la detección de fraudes, reconocimiento de imágenes y procesamiento de lenguaje natural.
Si las observamos por separado, el Internet de las Cosas (IoT) y la Inteligencia Artificial (IA) son tecnologías poderosas y si las combinamos, obten [...]
Leer más »El análisis de big data es el proceso de analizar fuentes de datos grandes y complejas para descubrir tendencias, patrones, comportamientos de los cl [...]
Leer más »En la era digital actual, las reseñas y comentarios de los clientes en línea se han convertido en un factor clave que influye en las decisiones de c [...]
Leer más »La inteligencia artificial está cambiando el mundo a una velocidad vertiginosa y seguro que te estarás preguntando cuándo superará la inteligencia [...]
Leer más »