Las máquinas de soporte vectorial (SVM, por sus siglas en inglés) son un tipo de algoritmo de aprendizaje supervisado utilizado para la clasificación y regresión en problemas de Machine Learning.
La idea detrás de las SVM es encontrar un hiperplano que separe de manera óptima las diferentes clases de datos. En el caso de la clasificación binaria, el hiperplano divide el espacio en dos regiones, una para cada clase. En el caso de la regresión, se busca un hiperplano que se ajuste lo mejor posible a los datos.
Para encontrar el hiperplano óptimo, las SVM buscan maximizar la distancia entre los puntos más cercanos de cada clase (llamados vectores de soporte), lo que se conoce como máximo margen. En caso de que los datos no sean linealmente separables, se utilizan técnicas de kernel para transformar el espacio de características en uno de mayor dimensionalidad donde sí puedan ser separables.
Las SVM son ampliamente utilizadas en la clasificación de datos en áreas como la biología, finanzas y marketing, así como en la detección de fraudes, reconocimiento de imágenes y procesamiento de lenguaje natural.
Muchas veces nos preguntamos qué ejemplos de IA nos podemos encontrar en nuestro entorno y es que, la inteligencia artificial es un concepto que engl [...]
Leer más »El software de optimización comercial basado en la inteligencia artificial debe tener feedback de las acciones comerciales llevadas a cabo, de las nu [...]
Leer más »Cobrar deudas, hoy en día, se está convirtiendo en una ardua tarea para muchas empresas o autónomos. Cada vez son más los bancos, servicios [...]
Leer más »La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »