Las máquinas de soporte vectorial (SVM, por sus siglas en inglés) son un tipo de algoritmo de aprendizaje supervisado utilizado para la clasificación y regresión en problemas de Machine Learning.
La idea detrás de las SVM es encontrar un hiperplano que separe de manera óptima las diferentes clases de datos. En el caso de la clasificación binaria, el hiperplano divide el espacio en dos regiones, una para cada clase. En el caso de la regresión, se busca un hiperplano que se ajuste lo mejor posible a los datos.
Para encontrar el hiperplano óptimo, las SVM buscan maximizar la distancia entre los puntos más cercanos de cada clase (llamados vectores de soporte), lo que se conoce como máximo margen. En caso de que los datos no sean linealmente separables, se utilizan técnicas de kernel para transformar el espacio de características en uno de mayor dimensionalidad donde sí puedan ser separables.
Las SVM son ampliamente utilizadas en la clasificación de datos en áreas como la biología, finanzas y marketing, así como en la detección de fraudes, reconocimiento de imágenes y procesamiento de lenguaje natural.
Existe consenso entre los directivos de las principales empresas del mundo acerca del impacto crucial que la Inteligencia Artificial (IA) en el sector [...]
Leer más »El escenario actual que estamos viviendo en España con la crisis sanitaria del COVID-19 ha provocado que muchas empresas hayan tenido que realizar ER [...]
Leer más »La Inteligencia Artificial está transformando la forma en la cual las empresas se relacionan con sus clientes, cómo se gestiona el trabajo, el talen [...]
Leer más »Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »