LSTM (Long short-term memory) es un tipo de red neuronal recurrente (RNN) que se utiliza en el aprendizaje profundo para procesar y predecir secuencias de datos. La LSTM fue diseñada para abordar el problema de la desaparición del gradiente en las redes neuronales recurrentes tradicionales, que se produce cuando se retropropaga el error a través de múltiples capas y se pierde información importante en el proceso. La LSTM utiliza una estructura de celda con puertas que permite a la red controlar la cantidad de información que se almacena y se olvida en cada paso de tiempo, lo que la hace especialmente adecuada para el procesamiento de secuencias de datos a largo plazo. Las LSTMs se han utilizado con éxito en una amplia variedad de aplicaciones de aprendizaje profundo, como el procesamiento del lenguaje natural, el reconocimiento de voz, la generación de texto y la predicción de series temporales.
En un mercado sobresaturado de información como el actual, cada vez es más difícil retener a los usuarios. Para las empresas, la competencia es cad [...]
Leer más »Existe consenso entre los directivos de las principales empresas del mundo acerca del impacto crucial que la Inteligencia Artificial (IA) en el sector [...]
Leer más »El análisis de big data es el proceso de analizar fuentes de datos grandes y complejas para descubrir tendencias, patrones, comportamientos de los cl [...]
Leer más »Las principales aplicaciones de IA como la mayoría de apps están al alcance de muchas empresas y permiten que grandes cantidades de datos sean anali [...]
Leer más »