LSTM (Long short-term memory) es un tipo de red neuronal recurrente (RNN) que se utiliza en el aprendizaje profundo para procesar y predecir secuencias de datos. La LSTM fue diseñada para abordar el problema de la desaparición del gradiente en las redes neuronales recurrentes tradicionales, que se produce cuando se retropropaga el error a través de múltiples capas y se pierde información importante en el proceso. La LSTM utiliza una estructura de celda con puertas que permite a la red controlar la cantidad de información que se almacena y se olvida en cada paso de tiempo, lo que la hace especialmente adecuada para el procesamiento de secuencias de datos a largo plazo. Las LSTMs se han utilizado con éxito en una amplia variedad de aplicaciones de aprendizaje profundo, como el procesamiento del lenguaje natural, el reconocimiento de voz, la generación de texto y la predicción de series temporales.
La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »La Cámara Oficial de Comercio de Sevilla, en colaboración con el Instituto Español de Analistas Financieros (IEAF), ofreció el pasado 16 de marzo [...]
Leer más »Las tecnologías de Inteligencia Artificial (IA) se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la i [...]
Leer más »