La generalización se refiere a la capacidad de un modelo de inteligencia artificial o machine learning de aplicar su aprendizaje a nuevas situaciones o datos que no se encuentran en su conjunto de entrenamiento original. En otras palabras, la generalización implica que un modelo es capaz de aprender patrones y características generales de un conjunto de datos y aplicar ese conocimiento a nuevos datos.
La generalización es un aspecto fundamental del aprendizaje automático, ya que el objetivo de entrenar un modelo es que pueda hacer predicciones precisas en datos que nunca ha visto antes. Si un modelo solo es capaz de realizar predicciones precisas en los datos utilizados para entrenarlo, se dice que ha sobreajustado o memorizado el conjunto de entrenamiento.
La capacidad de generalización de un modelo se puede mejorar mediante diversas técnicas, como la regularización, la validación cruzada, la selección de características y la recopilación de más datos de entrenamiento. En general, cuanto más amplio y diverso sea el conjunto de datos de entrenamiento, mejor será la capacidad de generalización del modelo.
Lo primero que hay que conocer son los límites de la IA y tras dominar los conceptos base se podrá construir un gran software comercial con intelige [...]
Leer más »El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]
Leer más »Data Mining es un proceso de exploración y análisis de grandes cantidades de datos, con el objetivo de descubrir patrones, relaciones y tendencias q [...]
Leer más »Si alguna vez te has preguntado cómo Spotify te recomienda canciones que te gustan o cómo Siri y Alexa pueden entender lo que les dices… la respue [...]
Leer más »