La generalización se refiere a la capacidad de un modelo de inteligencia artificial o machine learning de aplicar su aprendizaje a nuevas situaciones o datos que no se encuentran en su conjunto de entrenamiento original. En otras palabras, la generalización implica que un modelo es capaz de aprender patrones y características generales de un conjunto de datos y aplicar ese conocimiento a nuevos datos.
La generalización es un aspecto fundamental del aprendizaje automático, ya que el objetivo de entrenar un modelo es que pueda hacer predicciones precisas en datos que nunca ha visto antes. Si un modelo solo es capaz de realizar predicciones precisas en los datos utilizados para entrenarlo, se dice que ha sobreajustado o memorizado el conjunto de entrenamiento.
La capacidad de generalización de un modelo se puede mejorar mediante diversas técnicas, como la regularización, la validación cruzada, la selección de características y la recopilación de más datos de entrenamiento. En general, cuanto más amplio y diverso sea el conjunto de datos de entrenamiento, mejor será la capacidad de generalización del modelo.
Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »