La generalización se refiere a la capacidad de un modelo de inteligencia artificial o machine learning de aplicar su aprendizaje a nuevas situaciones o datos que no se encuentran en su conjunto de entrenamiento original. En otras palabras, la generalización implica que un modelo es capaz de aprender patrones y características generales de un conjunto de datos y aplicar ese conocimiento a nuevos datos.
La generalización es un aspecto fundamental del aprendizaje automático, ya que el objetivo de entrenar un modelo es que pueda hacer predicciones precisas en datos que nunca ha visto antes. Si un modelo solo es capaz de realizar predicciones precisas en los datos utilizados para entrenarlo, se dice que ha sobreajustado o memorizado el conjunto de entrenamiento.
La capacidad de generalización de un modelo se puede mejorar mediante diversas técnicas, como la regularización, la validación cruzada, la selección de características y la recopilación de más datos de entrenamiento. En general, cuanto más amplio y diverso sea el conjunto de datos de entrenamiento, mejor será la capacidad de generalización del modelo.
Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »Las empresas son cada vez más conscientes de la importancia de analizar y gestionar adecuadamente la ingente cantidad de datos que almacenan día tra [...]
Leer más »La Industria 4.0 o Cuarta Revolución Industrial se basa en la integración de tecnologías digitales en la producción y el procesamiento de bienes y [...]
Leer más »Las predicciones de GAMCO apuntan a un aumento de, al menos, un 10% en el porcentaje de la «morosidad en créditos» a particulares durante el próxi [...]
Leer más »