La explicabilidad se refiere a la capacidad de un modelo de aprendizaje automático para ser entendido y explicado de manera clara y comprensible por los humanos. La explicabilidad es importante porque muchos modelos de aprendizaje automático son muy complejos y difíciles de interpretar, lo que puede dificultar la comprensión de cómo se llega a las decisiones o predicciones que se hacen.
La explicabilidad es particularmente importante en aplicaciones críticas en las que es necesario comprender cómo se toman las decisiones, como la detección de fraudes o la toma de decisiones médicas. Los modelos de aprendizaje automático que son altamente explicables permiten a los expertos en la materia comprender cómo se toman las decisiones y explicarlas a los demás de una manera comprensible.
Existen varias técnicas para aumentar la explicabilidad de los modelos de aprendizaje automático, como la visualización de datos, la simplificación de los modelos, la identificación de características importantes y la interpretación de las decisiones tomadas por el modelo. Además, la explicabilidad también se puede mejorar mediante el uso de modelos de aprendizaje automático que son intrínsecamente más explicables, como los modelos basados en reglas y los modelos lineales.
El sector bancario ha experimentado transformaciones considerables durante los últimos 10 años. Especialmente a medida que la banca se ha ido integr [...]
Leer más »El software de optimización comercial basado en la inteligencia artificial debe tener feedback de las acciones comerciales llevadas a cabo, de las nu [...]
Leer más »La captación de nuevos clientes es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido necesario recurr [...]
Leer más »La IA es la ciencia que marcará las diferencias entre dos compañías que compitan en el mismo sector. El aprendizaje automático y la inteligencia a [...]
Leer más »