La evaluación de modelos es un proceso crítico en el desarrollo de modelos de aprendizaje automático y consiste en medir y comparar el rendimiento de los modelos para determinar su precisión y eficacia. El objetivo de la evaluación de modelos es determinar si un modelo es capaz de hacer predicciones precisas y consistentes sobre nuevos datos.
En el proceso de evaluación de modelos, se utiliza un conjunto de datos de prueba para probar el modelo y medir su rendimiento en términos de métricas específicas, como la precisión, la sensibilidad, la especificidad y la F1-score, entre otras. Estas métricas permiten determinar cuán bien el modelo se desempeña en la tarea para la cual se ha entrenado.
Además de las métricas de rendimiento, también se pueden utilizar técnicas de validación cruzada para evaluar la capacidad del modelo para generalizar a nuevos datos. Esto se hace dividiendo el conjunto de datos en varios subconjuntos de entrenamiento y prueba y evaluando el modelo en cada subconjunto para determinar su capacidad para hacer predicciones precisas en datos no vistos.
En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »La inteligencia empresarial, también conocida como "business intelligence" o BI, es un conjunto de técnicas, herramientas y metodologías que se uti [...]
Leer más »La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »