La evaluación comparativa es un proceso de comparación de diferentes modelos o algoritmos para determinar cuál es el mejor para una tarea o conjunto de datos determinados. La evaluación comparativa es un paso crítico en el desarrollo de modelos de aprendizaje automático, ya que ayuda a los ingenieros y científicos de datos a seleccionar el modelo más preciso y eficiente para una tarea específica.
En la evaluación comparativa, se compara el rendimiento de diferentes modelos utilizando una métrica o conjunto de métricas que reflejan la calidad de la predicción o la precisión del modelo. Algunas métricas comunes incluyen la precisión, la precisión media, la sensibilidad y la especificidad. También se pueden utilizar medidas de rendimiento más avanzadas, como el área bajo la curva (AUC) o la pérdida logarítmica.
La evaluación comparativa también puede implicar el uso de técnicas de validación cruzada, donde se divide el conjunto de datos en conjuntos de entrenamiento y prueba, y se entrena y prueba cada modelo en diferentes subconjuntos de datos para evitar el sobreajuste.
Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »Antes de explicaros qué es la inteligencia artificial, nos gustaría empezar con la frase del libro Age of intelligent machines (1992), de Raymond Ku [...]
Leer más »Un artículo publicado en abril de 2021 por Óscar Jiménez El Confidencial, se titulaba así “Premio de 34.000 M para los bancos por aplicar bien i [...]
Leer más »Las empresas son cada día más conscientes de la importancia de incorporar paulatinamente la inteligencia artificial a sus modelos de negocio. La imp [...]
Leer más »