La evaluación comparativa es un proceso de comparación de diferentes modelos o algoritmos para determinar cuál es el mejor para una tarea o conjunto de datos determinados. La evaluación comparativa es un paso crítico en el desarrollo de modelos de aprendizaje automático, ya que ayuda a los ingenieros y científicos de datos a seleccionar el modelo más preciso y eficiente para una tarea específica.
En la evaluación comparativa, se compara el rendimiento de diferentes modelos utilizando una métrica o conjunto de métricas que reflejan la calidad de la predicción o la precisión del modelo. Algunas métricas comunes incluyen la precisión, la precisión media, la sensibilidad y la especificidad. También se pueden utilizar medidas de rendimiento más avanzadas, como el área bajo la curva (AUC) o la pérdida logarítmica.
La evaluación comparativa también puede implicar el uso de técnicas de validación cruzada, donde se divide el conjunto de datos en conjuntos de entrenamiento y prueba, y se entrena y prueba cada modelo en diferentes subconjuntos de datos para evitar el sobreajuste.
Hoy vamos a hablar sobre la generación de leads cualificados para la captación de nuevos clientes mediante IA. En Gamco desarrollamos software basad [...]
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »A la hora de buscar financiación para empresas, una de las fórmulas más utilizadas en la actualidad es el factoring. Se trata de un recurso no siem [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »