Métricas de error utilizadas en modelización

Concepto y definición

Métricas de error utilizadas en modelización

¿Qué es Métricas de error utilizadas en modelización?

En el contexto de la modelización en inteligencia artificial y machine learning, las métricas de error son medidas utilizadas para evaluar la calidad de los modelos predictivos y de clasificación. Estas métricas permiten cuantificar la diferencia entre las predicciones del modelo y los valores reales, lo que permite comparar el rendimiento de diferentes modelos y seleccionar el mejor modelo para una tarea específica.

Algunas de las métricas de error más comunes utilizadas en modelización son las siguientes:

  • Error cuadrático medio (MSE, por sus siglas en inglés): mide la media de los errores al cuadrado entre las predicciones y los valores reales.
  • Raíz del error cuadrático medio (RMSE): es la raíz cuadrada del error cuadrático medio y se utiliza para interpretar la magnitud del error en la misma unidad que los valores de la variable objetivo.
  • Error absoluto medio (MAE, por sus siglas en inglés): mide la media de los errores absolutos entre las predicciones y los valores reales.
  • Error de mediana absoluta (MAD, por sus siglas en inglés): mide la mediana de los errores absolutos entre las predicciones y los valores reales.
  • Coeficiente de determinación (R^2): mide la proporción de la varianza en los datos que es explicada por el modelo.
  • Precisión: mide la proporción de los casos positivos que fueron correctamente clasificados.
  • Recall: mide la proporción de los casos positivos reales que fueron correctamente identificados por el modelo.
  • F1-score: es una medida de la precisión y el recall, que combina ambas métricas en una sola puntuación.

Estas métricas de error son herramientas valiosas para evaluar el rendimiento de los modelos de inteligencia artificial y machine learning y ajustar sus parámetros para mejorar su precisión y generalización.

En los documentos enlazados se describen algunos de los cálculos de errores más importantes utilizados en los problemas de predicción y clasificación.

Enlace | Generación de Conocimiento basado en Aprendizaje Automático y Aplicación en Diferentes Sectores

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
2 casos prácticos de Inteligencia artificial: venta y riesgo

¿Cómo nos está ayudando la inteligencia artificial? La inteligencia artificial (IA) ha pasado de ser un tema de película de ciencia ficción a un [...]

Leer más »
NPLs y recuperación de las carteras morosas

Normalmente las siglas NPLs (Non Performing Loans) se utilizan en el ámbito financiero y es una realidad tanto en los bancos españoles como en los b [...]

Leer más »
OpenAI: Qué es, cómo usarlo y qué puedes hacer con esta inteligencia artificial

OpenAI es una empresa tecnológica creada por los principales líderes en inteligencia artificial que, en sus comienzos, se definía como una organiza [...]

Leer más »
El Efecto del Boca a Boca Digital: Cómo las Reseñas de Clientes Impactan en las Decisiones de Compra

En la era digital actual, las reseñas y comentarios de los clientes en línea se han convertido en un factor clave que influye en las decisiones de c [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies