En el contexto de la modelización en inteligencia artificial y machine learning, las métricas de error son medidas utilizadas para evaluar la calidad de los modelos predictivos y de clasificación. Estas métricas permiten cuantificar la diferencia entre las predicciones del modelo y los valores reales, lo que permite comparar el rendimiento de diferentes modelos y seleccionar el mejor modelo para una tarea específica.
Algunas de las métricas de error más comunes utilizadas en modelización son las siguientes:
Estas métricas de error son herramientas valiosas para evaluar el rendimiento de los modelos de inteligencia artificial y machine learning y ajustar sus parámetros para mejorar su precisión y generalización.
En los documentos enlazados se describen algunos de los cálculos de errores más importantes utilizados en los problemas de predicción y clasificación.
Enlace | Generación de Conocimiento basado en Aprendizaje Automático y Aplicación en Diferentes Sectores
Hoy vamos a hablar sobre cómo prever problemas de pagos y prever los problemas en aquellos clientes que actualmente no te lo están dando. En G [...]
Leer más »A la hora de conseguir nuevos clientes, todo son alegrías y satisfacción por poder prestarles nuestro servicio o venderles nuestro producto de la me [...]
Leer más »La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »