Métricas de error utilizadas en modelización

Concepto y definición

Métricas de error utilizadas en modelización

¿Qué es Métricas de error utilizadas en modelización?

En el contexto de la modelización en inteligencia artificial y machine learning, las métricas de error son medidas utilizadas para evaluar la calidad de los modelos predictivos y de clasificación. Estas métricas permiten cuantificar la diferencia entre las predicciones del modelo y los valores reales, lo que permite comparar el rendimiento de diferentes modelos y seleccionar el mejor modelo para una tarea específica.

Algunas de las métricas de error más comunes utilizadas en modelización son las siguientes:

  • Error cuadrático medio (MSE, por sus siglas en inglés): mide la media de los errores al cuadrado entre las predicciones y los valores reales.
  • Raíz del error cuadrático medio (RMSE): es la raíz cuadrada del error cuadrático medio y se utiliza para interpretar la magnitud del error en la misma unidad que los valores de la variable objetivo.
  • Error absoluto medio (MAE, por sus siglas en inglés): mide la media de los errores absolutos entre las predicciones y los valores reales.
  • Error de mediana absoluta (MAD, por sus siglas en inglés): mide la mediana de los errores absolutos entre las predicciones y los valores reales.
  • Coeficiente de determinación (R^2): mide la proporción de la varianza en los datos que es explicada por el modelo.
  • Precisión: mide la proporción de los casos positivos que fueron correctamente clasificados.
  • Recall: mide la proporción de los casos positivos reales que fueron correctamente identificados por el modelo.
  • F1-score: es una medida de la precisión y el recall, que combina ambas métricas en una sola puntuación.

Estas métricas de error son herramientas valiosas para evaluar el rendimiento de los modelos de inteligencia artificial y machine learning y ajustar sus parámetros para mejorar su precisión y generalización.

En los documentos enlazados se describen algunos de los cálculos de errores más importantes utilizados en los problemas de predicción y clasificación.

Enlace | Generación de Conocimiento basado en Aprendizaje Automático y Aplicación en Diferentes Sectores

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
Cómo prever problemas de pagos de clientes con Inteligencia Artificial

Hoy vamos a hablar sobre cómo prever problemas de pagos y prever los problemas en aquellos clientes que actualmente no te lo están dando.  En G [...]

Leer más »
¿Cómo saber si un cliente me va a pagar?

A la hora de conseguir nuevos clientes, todo son alegrías y satisfacción por poder prestarles nuestro servicio o venderles nuestro producto de la me [...]

Leer más »
Por qué la IA predictiva es clave para el éxito de una empresa

La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]

Leer más »
4 claves para identificar las necesidades del cliente

Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies