En el contexto de la modelización en inteligencia artificial y machine learning, las métricas de error son medidas utilizadas para evaluar la calidad de los modelos predictivos y de clasificación. Estas métricas permiten cuantificar la diferencia entre las predicciones del modelo y los valores reales, lo que permite comparar el rendimiento de diferentes modelos y seleccionar el mejor modelo para una tarea específica.
Algunas de las métricas de error más comunes utilizadas en modelización son las siguientes:
Estas métricas de error son herramientas valiosas para evaluar el rendimiento de los modelos de inteligencia artificial y machine learning y ajustar sus parámetros para mejorar su precisión y generalización.
En los documentos enlazados se describen algunos de los cálculos de errores más importantes utilizados en los problemas de predicción y clasificación.
Enlace | Generación de Conocimiento basado en Aprendizaje Automático y Aplicación en Diferentes Sectores
A diferencia de un programa informático, en el que se procesan una lista de órdenes a través de un programa de ordenador, la IA va más allá de la [...]
Leer más »Las tecnologías de IA se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la interacción con los client [...]
Leer más »Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »El chargeback hace referencia a las devoluciones que ocurren cuando, a petición del titular de una tarjeta, el banco solicita en su nombre un reembol [...]
Leer más »