El conjunto de validación en el contexto de la inteligencia artificial y el aprendizaje automático, se refiere a un conjunto de datos independiente utilizado para evaluar la capacidad de un modelo entrenado para generalizar a datos no vistos anteriormente.
A diferencia del conjunto de prueba, el conjunto nuevo o de validación no se utiliza para ajustar los hiperparámetros del modelo, sino que se utiliza para evaluar su rendimiento final después de que se han seleccionado los hiperparámetros óptimos. Por lo tanto, el conjunto nuevo o de validación se utiliza para evitar el sobreajuste de los datos de prueba y para obtener una evaluación más realista de la capacidad del modelo para generalizar.
El conjunto nuevo o de validación se utiliza para seleccionar entre modelos alternativos y para ajustar los parámetros finales del modelo antes de su despliegue en producción. La elección del conjunto nuevo o de validación y su tamaño adecuado son críticos para la evaluación del modelo, ya que deben representar los datos que el modelo se encontrará en producción.
Es importante destacar que el conjunto nuevo o de validación también debe ser independiente del conjunto de entrenamiento y del conjunto de prueba para garantizar que el modelo no haya visto previamente los datos de validación durante su entrenamiento o evaluación previa.
GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »El término inteligencia artificial (IA) es pura actualidad, pero fue inventado en 1956 por John McCarthy, Marvin Minsky y Claude Shannon en la famosa [...]
Leer más »La IA es la ciencia que marcará las diferencias entre dos compañías que compitan en el mismo sector. El aprendizaje automático y la inteligencia a [...]
Leer más »Ya tienes todo lo necesario para ponerte manos a la obra y empezar a trabajar con los datos de la empresa. Tras sortear los primeros obstáculos de ma [...]
Leer más »