El conjunto de validación en el contexto de la inteligencia artificial y el aprendizaje automático, se refiere a un conjunto de datos independiente utilizado para evaluar la capacidad de un modelo entrenado para generalizar a datos no vistos anteriormente.
A diferencia del conjunto de prueba, el conjunto nuevo o de validación no se utiliza para ajustar los hiperparámetros del modelo, sino que se utiliza para evaluar su rendimiento final después de que se han seleccionado los hiperparámetros óptimos. Por lo tanto, el conjunto nuevo o de validación se utiliza para evitar el sobreajuste de los datos de prueba y para obtener una evaluación más realista de la capacidad del modelo para generalizar.
El conjunto nuevo o de validación se utiliza para seleccionar entre modelos alternativos y para ajustar los parámetros finales del modelo antes de su despliegue en producción. La elección del conjunto nuevo o de validación y su tamaño adecuado son críticos para la evaluación del modelo, ya que deben representar los datos que el modelo se encontrará en producción.
Es importante destacar que el conjunto nuevo o de validación también debe ser independiente del conjunto de entrenamiento y del conjunto de prueba para garantizar que el modelo no haya visto previamente los datos de validación durante su entrenamiento o evaluación previa.
Muchas veces nos preguntamos qué ejemplos de IA nos podemos encontrar en nuestro entorno y es que, la inteligencia artificial es un concepto que engl [...]
Leer más »Si alguna vez te has preguntado cómo Spotify te recomienda canciones que te gustan o cómo Siri y Alexa pueden entender lo que les dices… la respue [...]
Leer más »El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]
Leer más »La inteligencia artificial es cada vez más utilizada y aplicada en muchos sectores, y como no podía ser menos, ha entrado con fuerza en el sector de [...]
Leer más »