El conjunto de validación en el contexto de la inteligencia artificial y el aprendizaje automático, se refiere a un conjunto de datos independiente utilizado para evaluar la capacidad de un modelo entrenado para generalizar a datos no vistos anteriormente.
A diferencia del conjunto de prueba, el conjunto nuevo o de validación no se utiliza para ajustar los hiperparámetros del modelo, sino que se utiliza para evaluar su rendimiento final después de que se han seleccionado los hiperparámetros óptimos. Por lo tanto, el conjunto nuevo o de validación se utiliza para evitar el sobreajuste de los datos de prueba y para obtener una evaluación más realista de la capacidad del modelo para generalizar.
El conjunto nuevo o de validación se utiliza para seleccionar entre modelos alternativos y para ajustar los parámetros finales del modelo antes de su despliegue en producción. La elección del conjunto nuevo o de validación y su tamaño adecuado son críticos para la evaluación del modelo, ya que deben representar los datos que el modelo se encontrará en producción.
Es importante destacar que el conjunto nuevo o de validación también debe ser independiente del conjunto de entrenamiento y del conjunto de prueba para garantizar que el modelo no haya visto previamente los datos de validación durante su entrenamiento o evaluación previa.
A la hora de buscar financiación para empresas, una de las fórmulas más utilizadas en la actualidad es el factoring. Se trata de un recurso no siem [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »El análisis de big data es el proceso de analizar fuentes de datos grandes y complejas para descubrir tendencias, patrones, comportamientos de los cl [...]
Leer más »Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »