El conjunto de entrenamiento (CE), en el contexto de la inteligencia artificial y el aprendizaje automático, se refiere a un conjunto de datos que se utiliza para entrenar un modelo o algoritmo de aprendizaje automático.
El conjunto de entrenamiento se compone de un conjunto de ejemplos etiquetados, donde cada ejemplo incluye características (también conocidas como variables independientes o predictores) y una etiqueta (también conocida como variable dependiente o objetivo). El modelo de aprendizaje automático utiliza el conjunto de entrenamiento para aprender a relacionar las características de entrada con las etiquetas de salida, de modo que pueda generalizar para predecir etiquetas de salida para nuevos ejemplos.
El conjunto de entrenamiento es un componente crítico del proceso de aprendizaje automático, ya que la calidad y la cantidad de los datos de entrenamiento influyen en la precisión del modelo resultante.
Data Mining es un proceso de exploración y análisis de grandes cantidades de datos, con el objetivo de descubrir patrones, relaciones y tendencias q [...]
Leer más »Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »Lograr las metas empresariales y hacer un seguimiento del éxito es un aspecto importante para mejorar en cualquier negocio. En ventas, medir el progr [...]
Leer más »Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »