El conjunto de entrenamiento (CE), en el contexto de la inteligencia artificial y el aprendizaje automático, se refiere a un conjunto de datos que se utiliza para entrenar un modelo o algoritmo de aprendizaje automático.
El conjunto de entrenamiento se compone de un conjunto de ejemplos etiquetados, donde cada ejemplo incluye características (también conocidas como variables independientes o predictores) y una etiqueta (también conocida como variable dependiente o objetivo). El modelo de aprendizaje automático utiliza el conjunto de entrenamiento para aprender a relacionar las características de entrada con las etiquetas de salida, de modo que pueda generalizar para predecir etiquetas de salida para nuevos ejemplos.
El conjunto de entrenamiento es un componente crítico del proceso de aprendizaje automático, ya que la calidad y la cantidad de los datos de entrenamiento influyen en la precisión del modelo resultante.
La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]
Leer más »Cada vez más empresas están aprovechando la información relevante que extraen de los datos que poseen y generan para mejorar sus procesos y descubr [...]
Leer más »Las predicciones de GAMCO apuntan a un aumento de, al menos, un 10% en el porcentaje de la «morosidad en créditos» a particulares durante el próxi [...]
Leer más »Ya tienes todo lo necesario para ponerte manos a la obra y empezar a trabajar con los datos de la empresa. Tras sortear los primeros obstáculos de ma [...]
Leer más »