ARX es un modelo estadístico utilizado en el análisis de series de tiempo y en la predicción de variables dinámicas. ARX es un acrónimo de "AutoRegressive model with eXogenous inputs".
El modelo ARX es una extensión del modelo autoregresivo (AR) que incorpora variables exógenas (X) para modelar la relación entre una variable de interés y otras variables explicativas. El modelo ARX es útil cuando los valores futuros de la variable de interés pueden depender de los valores pasados de la misma variable, así como de los valores pasados de otras variables relacionadas.
En la práctica, el modelo ARX se puede ajustar a los datos mediante la identificación de los parámetros de AR y X que mejor describen la serie de tiempo. Luego, se puede utilizar el modelo ajustado para hacer predicciones futuras o para analizar la relación entre la variable de interés y las variables exógenas.
El modelo ARX es un modelo más simple que el modelo ARMAX, ya que solo considera la relación entre la variable de interés y las variables exógenas a través de un término autoregresivo. Sin embargo, el modelo ARX sigue siendo útil en muchos casos en los que la inclusión de términos de media móvil o de más de una variable exógena no es necesaria o no es posible.
Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »El término Business Intelligence (o BI) define el uso de tecnologías de la información para identificar, descubrir y analizar datos comerciales, co [...]
Leer más »En este artículo vamos a centrarnos en cómo la inteligencia artificial (IA) puede aumentar la eficiencia y reducir los costes de su empresa mediante [...]
Leer más »