El aprendizaje semisupervisado es una técnica de machine learning que combina el aprendizaje supervisado y no supervisado para aprovechar conjuntos de datos que contienen pocos ejemplos etiquetados y muchos ejemplos no etiquetados.
En el aprendizaje semisupervisado, se utilizan algoritmos de aprendizaje no supervisado para extraer características relevantes y representaciones útiles de los datos no etiquetados, y luego se utilizan estos conocimientos para mejorar la calidad del modelo de aprendizaje supervisado. El modelo de aprendizaje supervisado se entrena con los datos etiquetados y los datos no etiquetados, lo que permite aprovechar la información de los datos no etiquetados para mejorar la precisión del modelo.
El aprendizaje semisupervisado es particularmente útil en aplicaciones donde la recopilación de datos etiquetados es costosa o difícil, pero donde se dispone de una gran cantidad de datos no etiquetados. Se ha demostrado que el aprendizaje semisupervisado mejora significativamente la precisión de los modelos de machine learning en aplicaciones de reconocimiento de voz, visión por computadora y procesamiento de lenguaje natural.
La captación de nuevos clientes potenciales es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido nece [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »Hoy, 3 de octubre, hemos estado en los prestigiosos "Premios SCALEUPS B2B organizada por la Fundación Empresa y Sociedad, para hablaros de la Medici [...]
Leer más »