El aprendizaje por refuerzo es una técnica de machine learning en la que un agente aprende a tomar decisiones en un entorno interactivo, a través de la retroalimentación que recibe de su acción. El objetivo del agente es maximizar una recompensa numérica a largo plazo, que se le otorga por tomar las decisiones correctas en el entorno.
El aprendizaje por refuerzo se basa en el concepto de prueba y error, donde el agente aprende a través de la interacción continua con el entorno, ajustando sus acciones en función de las recompensas y penalizaciones que recibe. El agente explora diferentes acciones en el entorno, observa los resultados y aprende a seleccionar las acciones que maximizan la recompensa a largo plazo.
El aprendizaje por refuerzo se utiliza comúnmente en aplicaciones de robótica, juegos y automatización de procesos, donde un agente autónomo debe aprender a tomar decisiones en tiempo real para lograr objetivos específicos.
Hoy vamos a hablar sobre la generación de leads cualificados para la captación de nuevos clientes mediante IA. En Gamco desarrollamos software basad [...]
Leer más »En los últimos años todos los temas referentes a la Inteligencia Artificial (IA) están levantando un enorme interés. Quizás sea porque el corazó [...]
Leer más »El mercado del Big Data está en plena expansión. Aunque la necesidad de transformar datos en información para la toma de decisiones no es nueva, la [...]
Leer más »La moda que viene de USA y obligará a incorporar la IA en el proceso Seguramente hace poco tiempo que hemos empezado a escuchar un nuevo concepto en [...]
Leer más »