El aprendizaje no supervisado es una técnica de machine learning donde se proporciona un conjunto de datos de entrada sin etiquetar al algoritmo, es decir, sin indicarle cuál es la salida esperada. El objetivo del algoritmo es identificar patrones o estructuras subyacentes en los datos de entrada y agruparlos de manera significativa. A diferencia del aprendizaje supervisado, en el que el algoritmo recibe datos etiquetados, en el aprendizaje no supervisado el algoritmo debe encontrar patrones y relaciones en los datos por sí mismo. Ejemplos comunes de técnicas de aprendizaje no supervisado son el clustering y la reducción de la dimensionalidad.
Las soluciones de inteligencia artificial (IA) son valiosas para reducir las devoluciones de productos. A través del análisis de datos y la toma de [...]
Leer más »La inteligencia empresarial, también conocida como "business intelligence" o BI, es un conjunto de técnicas, herramientas y metodologías que se uti [...]
Leer más »Es conveniente que mediante un breve cuestionario seamos capaces de verificar la viabilidad de una oportunidad de negocio. A continuación, desarrolla [...]
Leer más »La IA es la ciencia que marcará las diferencias entre dos compañías que compitan en el mismo sector. El aprendizaje automático y la inteligencia a [...]
Leer más »