El aprendizaje federado es una técnica de aprendizaje automático que permite a múltiples dispositivos o sistemas colaborar en el entrenamiento de un modelo centralizado sin tener que compartir sus datos sensibles. En el aprendizaje federado, los dispositivos o sistemas mantienen sus datos de forma privada y solo comparten los parámetros del modelo entre ellos.
Esta técnica es útil en situaciones en las que los datos sensibles no se pueden compartir, por ejemplo, cuando se trabaja con datos médicos o financieros. En lugar de recopilar todos los datos en un solo lugar para entrenar un modelo, el aprendizaje federado permite que los datos se mantengan en los dispositivos o sistemas locales, lo que garantiza la privacidad de los datos.
El aprendizaje federado se utiliza en una variedad de aplicaciones, como el reconocimiento de voz, la detección de fraude y la recomendación personalizada. Por ejemplo, en el reconocimiento de voz, el aprendizaje federado permite que múltiples dispositivos personales participen en el entrenamiento de un modelo de reconocimiento de voz centralizado, lo que mejora la precisión del modelo sin comprometer la privacidad de los datos personales de los usuarios.
El uso de Inteligencia Artificial en los negocios es cada vez más común y necesario para la optimización y evolución de los procesos. En uno de nu [...]
Leer más »La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »Hoy, 3 de octubre, hemos estado en los prestigiosos "Premios SCALEUPS B2B organizada por la Fundación Empresa y Sociedad, para hablaros de la Medici [...]
Leer más »¿Cómo nos está ayudando la inteligencia artificial? La inteligencia artificial (IA) ha pasado de ser un tema de película de ciencia ficción a un [...]
Leer más »