El aprendizaje de máquina adversarial (AML) es una rama del aprendizaje de máquina que se enfoca en entrenar modelos de manera que sean resistentes a los ataques adversarios. En el contexto del AML, un ataque adversario es una perturbación deliberada a los datos de entrada que hace que el modelo de aprendizaje de máquina produzca una salida incorrecta o no deseada.
El AML se enfoca en desarrollar modelos de aprendizaje de máquina que puedan detectar y resistir estos ataques adversarios, lo que puede ser crítico en aplicaciones de seguridad, como la detección de fraude en transacciones financieras, el reconocimiento facial y la detección de intrusiones en redes informáticas.
Los ataques adversarios se pueden clasificar en diferentes tipos, como ataques de perturbación, en los que se agregan pequeñas modificaciones a los datos de entrada para engañar al modelo, o ataques de inyección, en los que se insertan datos maliciosos en la entrada.
Para combatir estos ataques, los modelos de AML se entrenan con datos de entrada que contienen perturbaciones adversarias. Esto ayuda al modelo a aprender a reconocer y resistir estos ataques en el futuro. También se utilizan técnicas como el enmascaramiento de datos, la detección de anomalías y la agregación de modelos para mejorar la resistencia del modelo.
La Automatización Inteligente de Procesos en las empresas ha cambiado en el mundo de forma muy rápida en los últimos años. El COVID-19, las interr [...]
Leer más »Para identificar las necesidades del cliente es necesario conocer su opinión, pues esto sirve para detectar dónde debes mejorar, qué aceptación te [...]
Leer más »Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »