El aprendizaje activo es una técnica de aprendizaje automático en la que un modelo de aprendizaje automático solicita a un usuario que etiquete manualmente una pequeña selección de datos de entrenamiento para mejorar su rendimiento. En lugar de esperar a que un gran conjunto de datos etiquetados esté disponible para el entrenamiento, el modelo de aprendizaje activo utiliza una estrategia de selección de muestras para elegir qué datos solicitar para su etiquetado.
La selección de muestras se basa en el grado de incertidumbre del modelo sobre una muestra, lo que significa que el modelo elige muestras que cree que son más difíciles de clasificar. Después de que el usuario etiqueta estas muestras, el modelo se entrena con el conjunto de datos actualizado y repite el proceso.
El aprendizaje activo es particularmente útil en situaciones en las que el etiquetado manual de datos puede ser costoso o difícil de obtener. Por ejemplo, en la clasificación de imágenes médicas, puede ser difícil obtener grandes cantidades de datos etiquetados, pero el aprendizaje activo puede ayudar a mejorar la precisión del modelo con una selección cuidadosa de muestras para su etiquetado.
Tras las revoluciones lideradas por el carbón, la electricidad y luego la electrónica, la sociedad está presenciando ahora una cuarta revolución i [...]
Leer más »En la actualidad, los consumidores de cualquier tipo de producto o servicio se han vuelto exigentes. Hace tiempo que dejó de servirles cualquier cosa [...]
Leer más »La web semántica o “internet del conocimiento” es una prolongación de la actual web. A diferencia de esta, la web semántica se basa en proporci [...]
Leer más »El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »