El Análisis de Componentes Principales (ACP) es una técnica estadística de reducción de dimensionalidad que se utiliza para identificar patrones y estructuras subyacentes en conjuntos de datos multivariados. El ACP transforma un conjunto de variables correlacionadas en un conjunto de variables no correlacionadas llamadas componentes principales, que representan la mayor parte de la variabilidad en los datos originales.
El objetivo del ACP es reducir la dimensionalidad de los datos al proyectarlos en un espacio de menor dimensión mientras se retiene la mayor cantidad posible de información. Los componentes principales se calculan a partir de una matriz de covarianza o de correlación de las variables originales y se ordenan en función de su contribución relativa a la variabilidad total del conjunto de datos. Los componentes principales se utilizan luego para reconstruir los datos originales, lo que permite una representación reducida del conjunto de datos original.
El ACP se utiliza comúnmente en aplicaciones de machine learning para simplificar y comprimir datos, lo que facilita el análisis y la visualización. También se utiliza en la exploración de datos para descubrir patrones y estructuras subyacentes en grandes conjuntos de datos multivariados.
La inteligencia artificial es cada vez más utilizada y aplicada en muchos sectores, y como no podía ser menos, ha entrado con fuerza en el sector de [...]
Leer más »Como consecuencia de esta situación de pandemia y económica en la que nos encontramos desde hace dos años, con la intención de proteger mejor los [...]
Leer más »Hoy en día la transformación digital es clave en cualquier tipo de negocio. El 40% de las empresas españolas no existirá en su forma actual en los [...]
Leer más »El contenido de este artículo sintetiza parte del capítulo “Concepto y breve historia de la Inteligencia Artificial” de la tesis Generación de [...]
Leer más »