El Análisis de Componentes Principales (ACP) es una técnica estadística de reducción de dimensionalidad que se utiliza para identificar patrones y estructuras subyacentes en conjuntos de datos multivariados. El ACP transforma un conjunto de variables correlacionadas en un conjunto de variables no correlacionadas llamadas componentes principales, que representan la mayor parte de la variabilidad en los datos originales.
El objetivo del ACP es reducir la dimensionalidad de los datos al proyectarlos en un espacio de menor dimensión mientras se retiene la mayor cantidad posible de información. Los componentes principales se calculan a partir de una matriz de covarianza o de correlación de las variables originales y se ordenan en función de su contribución relativa a la variabilidad total del conjunto de datos. Los componentes principales se utilizan luego para reconstruir los datos originales, lo que permite una representación reducida del conjunto de datos original.
El ACP se utiliza comúnmente en aplicaciones de machine learning para simplificar y comprimir datos, lo que facilita el análisis y la visualización. También se utiliza en la exploración de datos para descubrir patrones y estructuras subyacentes en grandes conjuntos de datos multivariados.
La captación de nuevos clientes potenciales es uno de los procesos con mayor importancia y dificultad para una empresa. Tradicionalmente ha sido nece [...]
Leer más »Lograr las metas empresariales y hacer un seguimiento del éxito es un aspecto importante para mejorar en cualquier negocio. En ventas, medir el progr [...]
Leer más »¿Qué es la Transformación Digital? La revolución industrial cambió profundamente la sociedad del siglo XIX, pero la transformación digital de la [...]
Leer más »El uso de Inteligencia Artificial en los negocios es cada vez más común y necesario para la optimización y evolución de los procesos. En uno de nu [...]
Leer más »