En el contexto de inteligencia artificial y machine learning, el análisis se refiere al proceso de examinar y comprender los datos utilizando técnicas estadísticas y algorítmicas para identificar patrones, relaciones y tendencias. El análisis es una parte esencial de cualquier proyecto de inteligencia artificial o machine learning, ya que permite a los investigadores y desarrolladores extraer información valiosa de los datos y utilizarla para tomar decisiones informadas o crear modelos predictivos.
El análisis de datos se puede realizar de diferentes formas, dependiendo del objetivo y el conjunto de datos en cuestión. Algunas técnicas comunes incluyen el análisis exploratorio de datos, el análisis descriptivo, el análisis de correlación, el análisis de regresión, el análisis de clustering y el análisis de componentes principales, entre otros.
En el contexto de machine learning, el análisis también puede referirse a la evaluación de modelos de aprendizaje automático para determinar su precisión y rendimiento en diferentes situaciones. Esto puede implicar el uso de métricas como la precisión, el recall, la F1-score y el área bajo la curva (AUC) para medir el rendimiento del modelo en conjunto de datos de entrenamiento y prueba.
Las predicciones de GAMCO apuntan a un aumento de, al menos, un 10% en el porcentaje de la «morosidad en créditos» a particulares durante el próxi [...]
Leer más »La inteligencia empresarial, también conocida como "business intelligence" o BI, es un conjunto de técnicas, herramientas y metodologías que se uti [...]
Leer más »Hoy vamos a explicar las diferencias que existen entre un CRM (Customer Relationship Management) tradicional y un CRM inteligente aplicando tecnologí [...]
Leer más »Si no sabes cuál es la diferencia entre un sistema ERP (Enterprise Resource Planning) y un sistema CRM (Customer Relationship Management), a continua [...]
Leer más »