ADALINE (Adaptive Linear Neuron) es un modelo de red neuronal artificial propuesto por Bernard Widrow y Ted Hoff en 1960. Es similar al perceptrón, pero en lugar de una función de activación escalonada, utiliza una función de activación lineal.
El ADALINE es un modelo de aprendizaje supervisado que se utiliza para realizar la clasificación binaria y la regresión lineal. La red neuronal está formada por una capa de entrada, una capa de salida y una capa de retroalimentación que ajusta los pesos de la capa de entrada en función de la salida obtenida.
El objetivo del ADALINE es minimizar el error cuadrático medio (MSE) entre la salida deseada y la salida real de la red. Para ello, utiliza el algoritmo de descenso del gradiente para ajustar los pesos de la capa de entrada.
El ADALINE es un modelo lineal, lo que significa que solo puede aprender relaciones lineales entre las entradas y las salidas. Sin embargo, puede ser utilizado como una unidad básica en modelos más complejos de redes neuronales, como las redes neuronales multicapa.
Antes de hablar de la inteligencia artificial en el mercado Fintech nos gustaría mencionar que el término Fintech se aplica hoy en día para las tec [...]
Leer más »El término Business Intelligence (o BI) define el uso de tecnologías de la información para identificar, descubrir y analizar datos comerciales, co [...]
Leer más »GAMCO es una empresa pionera en la creación de soluciones de software de Inteligencia Artificial y Aprendizaje Automático. Las soluciones de GAMCO p [...]
Leer más »Hoy vamos a hablar sobre la generación de leads cualificados para la captación de nuevos clientes mediante IA. En Gamco desarrollamos software basad [...]
Leer más »