ADALINE (Adaptive Linear Neuron) es un modelo de red neuronal artificial propuesto por Bernard Widrow y Ted Hoff en 1960. Es similar al perceptrón, pero en lugar de una función de activación escalonada, utiliza una función de activación lineal.
El ADALINE es un modelo de aprendizaje supervisado que se utiliza para realizar la clasificación binaria y la regresión lineal. La red neuronal está formada por una capa de entrada, una capa de salida y una capa de retroalimentación que ajusta los pesos de la capa de entrada en función de la salida obtenida.
El objetivo del ADALINE es minimizar el error cuadrático medio (MSE) entre la salida deseada y la salida real de la red. Para ello, utiliza el algoritmo de descenso del gradiente para ajustar los pesos de la capa de entrada.
El ADALINE es un modelo lineal, lo que significa que solo puede aprender relaciones lineales entre las entradas y las salidas. Sin embargo, puede ser utilizado como una unidad básica en modelos más complejos de redes neuronales, como las redes neuronales multicapa.
El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]
Leer más »Si las observamos por separado, el Internet de las Cosas (IoT) y la Inteligencia Artificial (IA) son tecnologías poderosas y si las combinamos, obten [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »Los métodos de clustering, o agrupamiento, son una pieza fundamental en el proceso de análisis de los datos, pues permiten una segmentación automá [...]
Leer más »