La evaluación de modelos es un proceso crítico en el desarrollo de modelos de aprendizaje automático y consiste en medir y comparar el rendimiento de los modelos para determinar su precisión y eficacia. El objetivo de la evaluación de modelos es determinar si un modelo es capaz de hacer predicciones precisas y consistentes sobre nuevos datos.
En el proceso de evaluación de modelos, se utiliza un conjunto de datos de prueba para probar el modelo y medir su rendimiento en términos de métricas específicas, como la precisión, la sensibilidad, la especificidad y la F1-score, entre otras. Estas métricas permiten determinar cuán bien el modelo se desempeña en la tarea para la cual se ha entrenado.
Además de las métricas de rendimiento, también se pueden utilizar técnicas de validación cruzada para evaluar la capacidad del modelo para generalizar a nuevos datos. Esto se hace dividiendo el conjunto de datos en varios subconjuntos de entrenamiento y prueba y evaluando el modelo en cada subconjunto para determinar su capacidad para hacer predicciones precisas en datos no vistos.
El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »Si alguna vez te has preguntado cómo Spotify te recomienda canciones que te gustan o cómo Siri y Alexa pueden entender lo que les dices… la respue [...]
Leer más »La Inteligencia Artificial (IA) deriva en una serie de modelos o ramas que se pueden emplear en diferentes ámbitos de la vida de las personas así co [...]
Leer más »El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]
Leer más »