El aprendizaje semisupervisado es una técnica de machine learning que combina el aprendizaje supervisado y no supervisado para aprovechar conjuntos de datos que contienen pocos ejemplos etiquetados y muchos ejemplos no etiquetados.
En el aprendizaje semisupervisado, se utilizan algoritmos de aprendizaje no supervisado para extraer características relevantes y representaciones útiles de los datos no etiquetados, y luego se utilizan estos conocimientos para mejorar la calidad del modelo de aprendizaje supervisado. El modelo de aprendizaje supervisado se entrena con los datos etiquetados y los datos no etiquetados, lo que permite aprovechar la información de los datos no etiquetados para mejorar la precisión del modelo.
El aprendizaje semisupervisado es particularmente útil en aplicaciones donde la recopilación de datos etiquetados es costosa o difícil, pero donde se dispone de una gran cantidad de datos no etiquetados. Se ha demostrado que el aprendizaje semisupervisado mejora significativamente la precisión de los modelos de machine learning en aplicaciones de reconocimiento de voz, visión por computadora y procesamiento de lenguaje natural.
El análisis de big data es el proceso de analizar fuentes de datos grandes y complejas para descubrir tendencias, patrones, comportamientos de los cl [...]
Leer más »El Procesamiento del Lenguaje Natural o NLP analiza cómo las máquinas entienden, interpretan y procesan el lenguaje humano.
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »Fernando Pavón, CEO de Gamco y experto en Inteligencia Artificial aplicada al negocio nos explica en los ciclo de AceleraPYMES cómo las pequeñas em [...]
Leer más »