El aprendizaje semisupervisado es una técnica de machine learning que combina el aprendizaje supervisado y no supervisado para aprovechar conjuntos de datos que contienen pocos ejemplos etiquetados y muchos ejemplos no etiquetados.
En el aprendizaje semisupervisado, se utilizan algoritmos de aprendizaje no supervisado para extraer características relevantes y representaciones útiles de los datos no etiquetados, y luego se utilizan estos conocimientos para mejorar la calidad del modelo de aprendizaje supervisado. El modelo de aprendizaje supervisado se entrena con los datos etiquetados y los datos no etiquetados, lo que permite aprovechar la información de los datos no etiquetados para mejorar la precisión del modelo.
El aprendizaje semisupervisado es particularmente útil en aplicaciones donde la recopilación de datos etiquetados es costosa o difícil, pero donde se dispone de una gran cantidad de datos no etiquetados. Se ha demostrado que el aprendizaje semisupervisado mejora significativamente la precisión de los modelos de machine learning en aplicaciones de reconocimiento de voz, visión por computadora y procesamiento de lenguaje natural.
La Inteligencia Artificial (IA) deriva en una serie de modelos o ramas que se pueden emplear en diferentes ámbitos de la vida de las personas así co [...]
Leer más »En los últimos años todos los temas referentes a la Inteligencia Artificial (IA) están levantando un enorme interés. Quizás sea porque el corazó [...]
Leer más »El Procesamiento del Lenguaje Natural o NLP analiza cómo las máquinas entienden, interpretan y procesan el lenguaje humano.
Leer más »El auge de la Inteligencia Artificial (IA) en los negocios está muy de actualidad. Su uso se está extendiendo y está cambiando, incluso, los modelo [...]
Leer más »