El aprendizaje por refuerzo es una técnica de machine learning en la que un agente aprende a tomar decisiones en un entorno interactivo, a través de la retroalimentación que recibe de su acción. El objetivo del agente es maximizar una recompensa numérica a largo plazo, que se le otorga por tomar las decisiones correctas en el entorno.
El aprendizaje por refuerzo se basa en el concepto de prueba y error, donde el agente aprende a través de la interacción continua con el entorno, ajustando sus acciones en función de las recompensas y penalizaciones que recibe. El agente explora diferentes acciones en el entorno, observa los resultados y aprende a seleccionar las acciones que maximizan la recompensa a largo plazo.
El aprendizaje por refuerzo se utiliza comúnmente en aplicaciones de robótica, juegos y automatización de procesos, donde un agente autónomo debe aprender a tomar decisiones en tiempo real para lograr objetivos específicos.
Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »Hace unos días pudimos asistir a un evento pionero en el mundo del Retail, la feria Retail Future 2022. En su quinta edición, y bajo el lema “Reta [...]
Leer más »La integración de herramientas para análisis predictivo es ya habitual en las grandes empresas, pero gracias a la evolución y, sobre todo, a la dem [...]
Leer más »El software de detección de fraude es una herramienta importante para proteger las empresas y los individuos de la actividad fraudulenta y minimizar [...]
Leer más »