Pruning, o podado en español, se refiere a una técnica de optimización de modelos de aprendizaje automático que consiste en eliminar de manera selectiva algunas de las conexiones y/o neuronas de una red neuronal para reducir su complejidad y mejorar su eficiencia.
El pruning se puede realizar durante la fase de entrenamiento o después de que el modelo haya sido entrenado. Durante el entrenamiento, se puede aplicar pruning para evitar que el modelo sobreajuste o para acelerar el proceso de entrenamiento. Después del entrenamiento, el pruning se puede aplicar para reducir el tamaño del modelo y hacer que sea más fácil de implementar y ejecutar en dispositivos con recursos limitados.
Existen varias técnicas de pruning, entre las que se incluyen la eliminación de neuronas y conexiones con menor importancia, la eliminación de neuronas y conexiones según su importancia relativa, y la eliminación de neuronas y conexiones según su actividad durante el entrenamiento.
El pruning es una técnica de optimización efectiva para reducir la complejidad de los modelos de aprendizaje automático sin sacrificar su precisión. Puede mejorar la eficiencia del modelo, reducir los costos de almacenamiento y acelerar su velocidad de ejecución. Sin embargo, también puede ser un proceso complejo y puede requerir un ajuste cuidadoso de los hiperparámetros del modelo para lograr los mejores resultados.
Seguramente te estés preguntando ¿Qué es un seguro de caución? ¿Y cómo ayuda a tu empresa? Y es que, en el entorno económico actual, [...]
Leer más »Hoy en día la transformación digital es clave en cualquier tipo de negocio. El 40% de las empresas españolas no existirá en su forma actual en los [...]
Leer más »Hoy vamos a hablar sobre cómo prever problemas de pagos y prever los problemas en aquellos clientes que actualmente no te lo están dando. En G [...]
Leer más »A diferencia de un programa informático, en el que se procesan una lista de órdenes a través de un programa de ordenador, la IA va más allá de la [...]
Leer más »