Los vecinos más cercanos (kNN, por sus siglas en inglés de "k-nearest neighbors") es un algoritmo de aprendizaje supervisado utilizado en el campo de la inteligencia artificial y el machine learning.
El algoritmo kNN se basa en la idea de que los objetos que son similares están cercanos en un espacio n-dimensional. El objetivo del algoritmo kNN es clasificar nuevos puntos de datos basados en los puntos de datos existentes que están más cercanos a ellos en términos de distancia euclidiana.
En el proceso de entrenamiento del modelo kNN, el algoritmo calcula la distancia entre cada punto de datos y los demás puntos de datos en el conjunto de entrenamiento. Cuando se recibe un nuevo punto de datos, el algoritmo busca los k puntos de datos más cercanos a él y clasifica el nuevo punto de datos según la etiqueta (clase) más común de los k vecinos más cercanos.
El valor de k es un hiperparámetro del algoritmo y se selecciona de acuerdo con la complejidad del problema y el tamaño del conjunto de datos. El algoritmo kNN es simple y fácil de implementar, pero su eficacia puede verse afectada por la elección del valor de k y la dimensión de los datos.
La moda que viene de USA y obligará a incorporar la IA en el proceso Seguramente hace poco tiempo que hemos empezado a escuchar un nuevo concepto en [...]
Leer más »En la actualidad, los consumidores de cualquier tipo de producto o servicio se han vuelto exigentes. Hace tiempo que dejó de servirles cualquier cosa [...]
Leer más »El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »La Cámara Oficial de Comercio de Sevilla, en colaboración con el Instituto Español de Analistas Financieros (IEAF), ofreció el pasado 16 de marzo [...]
Leer más »