Los vecinos más cercanos (kNN, por sus siglas en inglés de "k-nearest neighbors") es un algoritmo de aprendizaje supervisado utilizado en el campo de la inteligencia artificial y el machine learning.
El algoritmo kNN se basa en la idea de que los objetos que son similares están cercanos en un espacio n-dimensional. El objetivo del algoritmo kNN es clasificar nuevos puntos de datos basados en los puntos de datos existentes que están más cercanos a ellos en términos de distancia euclidiana.
En el proceso de entrenamiento del modelo kNN, el algoritmo calcula la distancia entre cada punto de datos y los demás puntos de datos en el conjunto de entrenamiento. Cuando se recibe un nuevo punto de datos, el algoritmo busca los k puntos de datos más cercanos a él y clasifica el nuevo punto de datos según la etiqueta (clase) más común de los k vecinos más cercanos.
El valor de k es un hiperparámetro del algoritmo y se selecciona de acuerdo con la complejidad del problema y el tamaño del conjunto de datos. El algoritmo kNN es simple y fácil de implementar, pero su eficacia puede verse afectada por la elección del valor de k y la dimensión de los datos.
Desde 2008, varios países han promulgado leyes que reconocen la importancia de integrar la inteligencia artificial (IA) en ámbitos clave de la vida [...]
Leer más »Las soluciones de inteligencia artificial (IA) son valiosas para reducir las devoluciones de productos. A través del análisis de datos y la toma de [...]
Leer más »El sector bancario ha experimentado transformaciones considerables durante los últimos 10 años. Especialmente a medida que la banca se ha ido integr [...]
Leer más »Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »