Los vecinos más cercanos (kNN, por sus siglas en inglés de "k-nearest neighbors") es un algoritmo de aprendizaje supervisado utilizado en el campo de la inteligencia artificial y el machine learning.
El algoritmo kNN se basa en la idea de que los objetos que son similares están cercanos en un espacio n-dimensional. El objetivo del algoritmo kNN es clasificar nuevos puntos de datos basados en los puntos de datos existentes que están más cercanos a ellos en términos de distancia euclidiana.
En el proceso de entrenamiento del modelo kNN, el algoritmo calcula la distancia entre cada punto de datos y los demás puntos de datos en el conjunto de entrenamiento. Cuando se recibe un nuevo punto de datos, el algoritmo busca los k puntos de datos más cercanos a él y clasifica el nuevo punto de datos según la etiqueta (clase) más común de los k vecinos más cercanos.
El valor de k es un hiperparámetro del algoritmo y se selecciona de acuerdo con la complejidad del problema y el tamaño del conjunto de datos. El algoritmo kNN es simple y fácil de implementar, pero su eficacia puede verse afectada por la elección del valor de k y la dimensión de los datos.
Una vez que se tenga claro los conceptos base para construir un software comercial con inteligencia artificial donde se define a quién dedicar esfuer [...]
Leer más »Normalmente las siglas NPLs (Non Performing Loans) se utilizan en el ámbito financiero y es una realidad tanto en los bancos españoles como en los b [...]
Leer más »La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »En los anteriores artículos ("Conceptos base para construir un software comercial con inteligencia artificial" y "¿Cómo se materializan las oportun [...]
Leer más »