Los vecinos más cercanos (kNN, por sus siglas en inglés de "k-nearest neighbors") es un algoritmo de aprendizaje supervisado utilizado en el campo de la inteligencia artificial y el machine learning.
El algoritmo kNN se basa en la idea de que los objetos que son similares están cercanos en un espacio n-dimensional. El objetivo del algoritmo kNN es clasificar nuevos puntos de datos basados en los puntos de datos existentes que están más cercanos a ellos en términos de distancia euclidiana.
En el proceso de entrenamiento del modelo kNN, el algoritmo calcula la distancia entre cada punto de datos y los demás puntos de datos en el conjunto de entrenamiento. Cuando se recibe un nuevo punto de datos, el algoritmo busca los k puntos de datos más cercanos a él y clasifica el nuevo punto de datos según la etiqueta (clase) más común de los k vecinos más cercanos.
El valor de k es un hiperparámetro del algoritmo y se selecciona de acuerdo con la complejidad del problema y el tamaño del conjunto de datos. El algoritmo kNN es simple y fácil de implementar, pero su eficacia puede verse afectada por la elección del valor de k y la dimensión de los datos.
Todas los negocios tienen planificado, normalmente, un crecimiento anual aunque no todos lo logran. Aumentar las ventas de una empresa en este 2022 es [...]
Leer más »A la hora de buscar financiación para empresas, una de las fórmulas más utilizadas en la actualidad es el factoring. Se trata de un recurso no siem [...]
Leer más »Es de vital importancia comprender, identificar y satisfacer las necesidades de los clientes. De este modo, nuestro negocio podrá ofrecer productos y [...]
Leer más »Fernando Pavón, CEO de Gamco y experto en Inteligencia Artificial aplicada al negocio nos explica en los ciclo de AceleraPYMES cómo las pequeñas em [...]
Leer más »