El sobreajuste, o overfitting en inglés, es un término utilizado en aprendizaje automático para describir un modelo que ha sido demasiado ajustado a los datos de entrenamiento, lo que resulta en un rendimiento deficiente en datos nuevos o no vistos. Es decir, el modelo se ha aprendido los datos de entrenamiento "de memoria", en lugar de capturar las relaciones subyacentes en los datos. Esto puede ocurrir cuando el modelo es demasiado complejo o se entrena durante demasiado tiempo, lo que lleva a una mayor capacidad del modelo para ajustarse a los datos de entrenamiento en lugar de generalizar a nuevos datos. Los métodos para evitar el sobreajuste incluyen la validación cruzada, la reducción de la complejidad del modelo y la adición de regularización.
El uso de Inteligencia Artificial en los negocios es cada vez más común y necesario para la optimización y evolución de los procesos. En uno de nu [...]
Leer más »La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]
Leer más »Las tecnologías de Inteligencia Artificial (IA) se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la i [...]
Leer más »Se pueden destacar 5 desafíos del Big Data que se definen como V (volumen, velocidad, veracidad, variedad y valor). R. Narasimhan debatió sobre 3V c [...]
Leer más »