Sobreajuste

Concepto y definición

Sobreajuste

¿Qué es Sobreajuste?

El sobreajuste, o overfitting en inglés, es un término utilizado en aprendizaje automático para describir un modelo que ha sido demasiado ajustado a los datos de entrenamiento, lo que resulta en un rendimiento deficiente en datos nuevos o no vistos. Es decir, el modelo se ha aprendido los datos de entrenamiento "de memoria", en lugar de capturar las relaciones subyacentes en los datos. Esto puede ocurrir cuando el modelo es demasiado complejo o se entrena durante demasiado tiempo, lo que lleva a una mayor capacidad del modelo para ajustarse a los datos de entrenamiento en lugar de generalizar a nuevos datos. Los métodos para evitar el sobreajuste incluyen la validación cruzada, la reducción de la complejidad del modelo y la adición de regularización.

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
Qué es el aprendizaje automático

En los últimos años todos los temas referentes a la Inteligencia Artificial (IA) están levantando un enorme interés. Quizás sea porque el corazó [...]

Leer más »
Cómo Gamco revolucionó la gestión de riesgos en créditos para Bankia

En el dinámico mundo financiero, optimizar la rentabilidad de los activos disponibles es esencial para el éxito de cualquier entidad crediticia. Gam [...]

Leer más »
Qué es el credit scoring y por qué la Inteligencia Artificial lo cambiará para siempre

El  'credit scoring' es un sistema que sirve para calificar créditos e intentar automatizar, con ello, la toma de decisiones a la hora de p [...]

Leer más »
¿Qué relación tiene el Big Data con el Aprendizaje Automático?

El mundo está experimentando un crecimiento exponencial en la generación de datos con una escala cada vez mayor. Según IDC (International Data Corp [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies