Sobreajuste

Concepto y definición

Sobreajuste

¿Qué es Sobreajuste?

El sobreajuste, o overfitting en inglés, es un término utilizado en aprendizaje automático para describir un modelo que ha sido demasiado ajustado a los datos de entrenamiento, lo que resulta en un rendimiento deficiente en datos nuevos o no vistos. Es decir, el modelo se ha aprendido los datos de entrenamiento "de memoria", en lugar de capturar las relaciones subyacentes en los datos. Esto puede ocurrir cuando el modelo es demasiado complejo o se entrena durante demasiado tiempo, lo que lleva a una mayor capacidad del modelo para ajustarse a los datos de entrenamiento en lugar de generalizar a nuevos datos. Los métodos para evitar el sobreajuste incluyen la validación cruzada, la reducción de la complejidad del modelo y la adición de regularización.

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
¿Qué ventajas tiene la inteligencia artificial?

El uso de Inteligencia Artificial en los negocios es cada vez más común y necesario para la optimización y evolución de los procesos. En uno de nu [...]

Leer más »
6 Ventajas de los servicios en la nube

La implantación masiva de servicios en la nube en las empresas ha transformado el modo en que se realizaban las transacciones comerciales, pues conll [...]

Leer más »
Mercado, privacidad e inteligencia artificial

Las tecnologías de Inteligencia Artificial (IA) se usan actualmente en las empresas para la transformación de los procesos de negocio, impulsar la i [...]

Leer más »
Los 5 desafíos del Big Data en Aprendizaje Automático

Se pueden destacar 5 desafíos del Big Data que se definen como V (volumen, velocidad, veracidad, variedad y valor). R. Narasimhan debatió sobre 3V c [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies