La red neuronal de OJA, también conocida como red neuronal de Oja's rule, es un tipo de red neuronal artificial que se utiliza para el aprendizaje no supervisado en problemas de reducción de dimensiones y análisis de componentes principales.
Fue desarrollada por el matemático finlandés Erkki Oja en 1982 y se basa en un algoritmo de aprendizaje que permite a la red neuronal encontrar las direcciones principales de las características de entrada y reducir la dimensión de los datos. En comparación con otros métodos de reducción de dimensiones, la red neuronal de OJA es capaz de manejar mejor datos altamente correlacionados y no lineales.
El funcionamiento de la red neuronal de OJA se basa en el ajuste de los pesos sinápticos de la red para que la neurona de salida responda de manera selectiva a patrones específicos de entrada. Esto se logra mediante el cálculo iterativo de los pesos sinápticos para maximizar la correlación entre las entradas y la salida de la neurona.
El aprendizaje automático es una rama de la inteligencia artificial (IA) que se basa en conseguir que un sistema sea capaz de aprender a partir de la [...]
Leer más »Las siglas ERP significan Enterprise Resource Planning y se trata de un sistema de planificación informático y gestión empresarial capaz de integra [...]
Leer más »La inteligencia artificial (IA), el Aprendizaje Automático (ML) y el análisis de datos están cambiando rápidamente y teniendo un gran impacto en e [...]
Leer más »En la era digital en la que vivimos, la inteligencia artificial (IA) ha emergido como una fuerza disruptiva en numerosas industrias, y el sector banca [...]
Leer más »