La red neuronal de OJA, también conocida como red neuronal de Oja's rule, es un tipo de red neuronal artificial que se utiliza para el aprendizaje no supervisado en problemas de reducción de dimensiones y análisis de componentes principales.
Fue desarrollada por el matemático finlandés Erkki Oja en 1982 y se basa en un algoritmo de aprendizaje que permite a la red neuronal encontrar las direcciones principales de las características de entrada y reducir la dimensión de los datos. En comparación con otros métodos de reducción de dimensiones, la red neuronal de OJA es capaz de manejar mejor datos altamente correlacionados y no lineales.
El funcionamiento de la red neuronal de OJA se basa en el ajuste de los pesos sinápticos de la red para que la neurona de salida responda de manera selectiva a patrones específicos de entrada. Esto se logra mediante el cálculo iterativo de los pesos sinápticos para maximizar la correlación entre las entradas y la salida de la neurona.
Lograr las metas empresariales y hacer un seguimiento del éxito es un aspecto importante para mejorar en cualquier negocio. En ventas, medir el progr [...]
Leer más »Antes de explicaros qué es la inteligencia artificial, nos gustaría empezar con la frase del libro Age of intelligent machines (1992), de Raymond Ku [...]
Leer más »Lo primero que hay que conocer son los límites de la IA y tras dominar los conceptos base se podrá construir un gran software comercial con intelige [...]
Leer más »El Churn, o la tasa de pérdida de clientes, representa un desafío constante para las empresas actuales. La capacidad para retener a los clientes exi [...]
Leer más »