El procesamiento paralelo y distribuido se refiere a la capacidad de distribuir y procesar grandes conjuntos de datos en paralelo en varios nodos o dispositivos de hardware para acelerar el tiempo de procesamiento y mejorar el rendimiento. En lugar de procesar los datos en un solo dispositivo, el procesamiento paralelo y distribuido divide los datos en varias partes y las procesa simultáneamente en diferentes dispositivos.
En el contexto de la inteligencia artificial y el aprendizaje automático, el procesamiento paralelo y distribuido se utiliza para entrenar modelos más grandes y complejos en grandes conjuntos de datos. Esto se logra mediante el uso de técnicas como el procesamiento en clústeres y el procesamiento en GPU para dividir y procesar los datos en paralelo en varios dispositivos.
El procesamiento paralelo y distribuido también se utiliza en otros campos de la informática, como el procesamiento de datos científicos, la simulación de sistemas complejos y el procesamiento de grandes conjuntos de datos en tiempo real en la nube. La capacidad de procesar grandes cantidades de datos en paralelo y distribuido es fundamental para el éxito de muchos proyectos de informática y ha sido un factor clave en el avance de la tecnología en las últimas décadas.
Si alguna vez te has preguntado cómo Spotify te recomienda canciones que te gustan o cómo Siri y Alexa pueden entender lo que les dices… la respue [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »Una de las decisiones a las que se enfrenta una empresa que necesite una infraestructura de IT, es la de elegir en dónde se localiza esta infraestruc [...]
Leer más »El término inteligencia artificial (IA) es pura actualidad, pero fue inventado en 1956 por John McCarthy, Marvin Minsky y Claude Shannon en la famosa [...]
Leer más »