El procesamiento paralelo y distribuido se refiere a la capacidad de distribuir y procesar grandes conjuntos de datos en paralelo en varios nodos o dispositivos de hardware para acelerar el tiempo de procesamiento y mejorar el rendimiento. En lugar de procesar los datos en un solo dispositivo, el procesamiento paralelo y distribuido divide los datos en varias partes y las procesa simultáneamente en diferentes dispositivos.
En el contexto de la inteligencia artificial y el aprendizaje automático, el procesamiento paralelo y distribuido se utiliza para entrenar modelos más grandes y complejos en grandes conjuntos de datos. Esto se logra mediante el uso de técnicas como el procesamiento en clústeres y el procesamiento en GPU para dividir y procesar los datos en paralelo en varios dispositivos.
El procesamiento paralelo y distribuido también se utiliza en otros campos de la informática, como el procesamiento de datos científicos, la simulación de sistemas complejos y el procesamiento de grandes conjuntos de datos en tiempo real en la nube. La capacidad de procesar grandes cantidades de datos en paralelo y distribuido es fundamental para el éxito de muchos proyectos de informática y ha sido un factor clave en el avance de la tecnología en las últimas décadas.
Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]
Leer más »El 'credit scoring' es un sistema que sirve para calificar créditos e intentar automatizar, con ello, la toma de decisiones a la hora de p [...]
Leer más »Muchas veces nos preguntamos dónde se aplica el Big Data y podemos suponer una gran relevancia de Big Data para los negocios. Esto explica el gran in [...]
Leer más »La inteligencia artificial es cada vez más utilizada y aplicada en muchos sectores, y como no podía ser menos, ha entrado con fuerza en el sector de [...]
Leer más »