Mínimo error de clasificación - MCE

Concepto y definición

Mínimo error de clasificación - MCE

¿Qué es Mínimo error de clasificación - MCE?

El mínimo error de clasificación (MCE, por sus siglas en inglés) es una medida de la calidad de un modelo de clasificación en inteligencia artificial y machine learning. Esta medida se refiere a la tasa de error más baja que se puede lograr al clasificar los datos de un conjunto de prueba.

El MCE se utiliza para evaluar la capacidad de un modelo de clasificación para generalizar a datos nuevos y no vistos, lo que se conoce como capacidad de generalización. Un modelo con un MCE bajo es capaz de clasificar correctamente la mayoría de los datos de prueba y tiene una mejor capacidad de generalización que un modelo con un MCE alto.

El MCE se determina mediante la comparación de las predicciones del modelo con las etiquetas reales de los datos de prueba. El error de clasificación se define como la proporción de ejemplos que se clasifican incorrectamente. El MCE se alcanza cuando se encuentra el valor mínimo de error de clasificación posible para el modelo, lo que implica que el modelo es lo más preciso posible en la tarea de clasificación.

El MCE es una medida importante en el desarrollo y evaluación de modelos de clasificación en inteligencia artificial y machine learning, ya que permite comparar la calidad de diferentes modelos y seleccionar el mejor para una tarea específica. Además, el MCE puede ayudar a identificar las áreas en las que el modelo necesita mejoras para mejorar su capacidad de generalización.

También se puede considerar como una variante del método de LVQ (Learning Vector Quantization). En este sentido, MCE es una técnica de entrenamiento que utiliza el criterio de mínimo error de clasificación para ajustar los pesos de los vectores de codificación en la red de LVQ. El objetivo de MCE es minimizar la tasa de error de clasificación, es decir, la proporción de muestras clasificadas incorrectamente. MCE utiliza una función de costo que mide la discrepancia entre la salida de la red y el valor esperado de la salida para cada muestra de entrenamiento.

MCE se utiliza en problemas de clasificación binaria y multiclase, y es útil cuando la cantidad de muestras de entrenamiento es limitada o cuando las clases son desequilibradas.

Reference: Biing-Hwang Juang and Shigeru Katagiri. Discriminative learning for minimum error classication.

« Volver al glosario

¿Quieres ponerte en contacto?

¡Nos encantaría saber de ti! Contáctanos completando el formulario que aparece a continuación y estaremos encantados de ayudarte.
Rellena el formulario
Compartir:
La inteligencia artificial en el sector de las telecomunicaciones

Existe un amplio consenso entre los directivos de las principales empresas del mundo acerca del impacto que va a tener la inteligencia artificial en e [...]

Leer más »
Inteligencia Artificial para vender más y mejor: desarrollo y fidelización de los clientes.

La inteligencia artificial (IA) puede cambiar la forma de gestionar los canales de ventas y clientes de las empresas fabricantes y distribuidoras de p [...]

Leer más »
Sistema ERP vs CRM: ¿Cuál es la diferencia?

Si no sabes cuál es la diferencia entre un sistema ERP (Enterprise Resource Planning) y un sistema CRM (Customer Relationship Management), a continua [...]

Leer más »
Tipos de análisis que se realizan con Big Data

El análisis de big data es el proceso de analizar fuentes de datos grandes y complejas para descubrir tendencias, patrones, comportamientos de los cl [...]

Leer más »
Ver más entradas
© Gamco 2021, All Rights Reserved - Aviso legal - Privacidad - Cookies