Las máquinas de memoria limitada son modelos de aprendizaje automático que utilizan una memoria externa para almacenar información relevante durante el proceso de aprendizaje. Estos modelos se utilizan para resolver problemas de aprendizaje de secuencias en los que se requiere mantener una memoria a largo plazo de las entradas anteriores. La memoria externa en las máquinas de memoria limitada puede ser un vector, una matriz o una memoria de acceso aleatorio (RAM). La memoria se lee y se escribe mediante una atención selectiva, lo que permite al modelo enfocarse en partes relevantes de la memoria durante la predicción. Las máquinas de memoria limitada se utilizan en aplicaciones de procesamiento de lenguaje natural, como la traducción automática y la generación de texto, así como en tareas de predicción de series temporales, como el pronóstico del mercado de valores. Un ejemplo popular de máquina de memoria limitada es la red neuronal transformadora (Transformer), que se ha utilizado con éxito en una amplia variedad de aplicaciones de procesamiento de lenguaje natural.
Las predicciones de GAMCO apuntan a un aumento de, al menos, un 10% en el porcentaje de la «morosidad en créditos» a particulares durante el próxi [...]
Leer más »Para saber cómo funciona la tecnología semántica, lo primero que debes saber es que se encarga de ayudar a los sistemas de inteligencia artificial [...]
Leer más »El término inteligencia artificial (IA) es pura actualidad, pero fue inventado en 1956 por John McCarthy, Marvin Minsky y Claude Shannon en la famosa [...]
Leer más »La Industria 4.0 es el nombre dado a la cuarta revolución industrial que se caracteriza por la inclusión de tecnologías avanzadas en los procesos d [...]
Leer más »