Las máquinas de memoria limitada son modelos de aprendizaje automático que utilizan una memoria externa para almacenar información relevante durante el proceso de aprendizaje. Estos modelos se utilizan para resolver problemas de aprendizaje de secuencias en los que se requiere mantener una memoria a largo plazo de las entradas anteriores. La memoria externa en las máquinas de memoria limitada puede ser un vector, una matriz o una memoria de acceso aleatorio (RAM). La memoria se lee y se escribe mediante una atención selectiva, lo que permite al modelo enfocarse en partes relevantes de la memoria durante la predicción. Las máquinas de memoria limitada se utilizan en aplicaciones de procesamiento de lenguaje natural, como la traducción automática y la generación de texto, así como en tareas de predicción de series temporales, como el pronóstico del mercado de valores. Un ejemplo popular de máquina de memoria limitada es la red neuronal transformadora (Transformer), que se ha utilizado con éxito en una amplia variedad de aplicaciones de procesamiento de lenguaje natural.
Las oportunidades de negocio están en todas partes y muchas veces no sabemos cuales son los sectores con mayor potencial para el emprendimiento.  [...]
Leer más »A medida que el comercio electrónico continúa creciendo a un ritmo vertiginoso, los estafadores también están encontrando nuevas y sofisticadas fo [...]
Leer más »Las predicciones de GAMCO apuntan a un aumento de, al menos, un 10% en el porcentaje de la «morosidad en créditos» a particulares durante el próxi [...]
Leer más »Fernando Pavón, CEO de Gamco y experto en Inteligencia Artificial aplicada al negocio nos explica en los ciclo de AceleraPYMES cómo las pequeñas em [...]
Leer más »